论文标题
进化多目标优化的广义标量方法
A Generalized Scalarization Method for Evolutionary Multi-Objective Optimization
论文作者
论文摘要
基于分解的多目标进化算法(MOEA/D)将多目标优化问题(MOP)转换为一组单目标子问题,以进行协作优化。子问题和解决方案之间的不匹配会导致MOEA/d的严重降解。仅当使用$ L _ {\ infty} $标量化时,大多数现有的不匹配应对策略才能起作用。一个不匹配的应对策略,即使面对具有非凸帕莱托阵线的拖把,也可以使用任何$ L_ {P} $标量化,对MoeA/d也具有重要意义。本文将全局替代品(GR)用作骨干。我们分析了当$ l _ {\ infty} $被另一个$ l_ {p} $取代时,GR如何避免不匹配,并在[1,\ infty)$中$ p \ in [p} $所取代,并发现基于$ l_p $ b的($ 1 \ leq p <\ iffty $)的$ l_p $ bly $ p。当$ p $设置为较小的价值时,一些中间子问题具有很小的首选项区域,因此它们的方向向量无法通过相应的优先区域。因此,我们提出了一个广义的$ L_P $(g $ l_p $)标量,以确保子问题向量通过其优先区域通过。我们的理论分析表明,使用G $ L_P $标量为任何$ p \ geq 1 $时,GR总是可以避免不匹配。各种拖把的实验研究符合理论分析。
The decomposition-based multi-objective evolutionary algorithm (MOEA/D) transforms a multi-objective optimization problem (MOP) into a set of single-objective subproblems for collaborative optimization. Mismatches between subproblems and solutions can lead to severe performance degradation of MOEA/D. Most existing mismatch coping strategies only work when the $L_{\infty}$ scalarization is used. A mismatch coping strategy that can use any $L_{p}$ scalarization, even when facing MOPs with non-convex Pareto fronts, is of great significance for MOEA/D. This paper uses the global replacement (GR) as the backbone. We analyze how GR can no longer avoid mismatches when $L_{\infty}$ is replaced by another $L_{p}$ with $p\in [1,\infty)$, and find that the $L_p$-based ($1\leq p<\infty$) subproblems having inconsistently large preference regions. When $p$ is set to a small value, some middle subproblems have very small preference regions so that their direction vectors cannot pass through their corresponding preference regions. Therefore, we propose a generalized $L_p$ (G$L_p$) scalarization to ensure that the subproblem's direction vector passes through its preference region. Our theoretical analysis shows that GR can always avoid mismatches when using the G$L_p$ scalarization for any $p\geq 1$. The experimental studies on various MOPs conform to the theoretical analysis.