论文标题

基于自我监督梯度的组成的多分辨率单眼图融合

Multi-resolution Monocular Depth Map Fusion by Self-supervised Gradient-based Composition

论文作者

Dai, Yaqiao, Yi, Renjiao, Zhu, Chenyang, He, Hongjun, Xu, Kai

论文摘要

单眼深度估计是一个具有挑战性的问题,深层神经网络具有巨大的潜力。但是,由于卷积操作和网络中的下采样,现有深层模型预测的深度图通常缺乏细粒度的细节。我们发现,增加的输入分辨率有助于保留更多的本地细节,而低分辨率的估计在全球范围内更准确。因此,我们提出了一个新型的深度图融合模块,以将估计的优势与多分辨率输入相结合。我们采用泊松融合的核心思想,试图将高分辨率深度的梯度域植入低分辨率深度,而不是平等地融合低分辨率估计。尽管经典的泊松融合需要融合面罩作为监督,但我们提出了一个基于指导图像过滤的自我监督框架。我们证明,与最先进的深度图融合方法相比,这种基于梯度的组合在嘈杂的免疫力下表现更好。我们的轻量级深度融合是一声的,并实时运行,使我们的方法比最新的深度融合方法快80倍。定量评估表明,所提出的方法可以集成到许多完全卷积的单眼深度估计骨架中,具有显着的性能提升,从而导致了深度图上细节增强的最新结果。

Monocular depth estimation is a challenging problem on which deep neural networks have demonstrated great potential. However, depth maps predicted by existing deep models usually lack fine-grained details due to the convolution operations and the down-samplings in networks. We find that increasing input resolution is helpful to preserve more local details while the estimation at low resolution is more accurate globally. Therefore, we propose a novel depth map fusion module to combine the advantages of estimations with multi-resolution inputs. Instead of merging the low- and high-resolution estimations equally, we adopt the core idea of Poisson fusion, trying to implant the gradient domain of high-resolution depth into the low-resolution depth. While classic Poisson fusion requires a fusion mask as supervision, we propose a self-supervised framework based on guided image filtering. We demonstrate that this gradient-based composition performs much better at noisy immunity, compared with the state-of-the-art depth map fusion method. Our lightweight depth fusion is one-shot and runs in real-time, making our method 80X faster than a state-of-the-art depth fusion method. Quantitative evaluations demonstrate that the proposed method can be integrated into many fully convolutional monocular depth estimation backbones with a significant performance boost, leading to state-of-the-art results of detail enhancement on depth maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源