论文标题

估计电压大小对复杂功率注射的敏感性的条件

Conditions for Estimation of Sensitivities of Voltage Magnitudes to Complex Power Injections

论文作者

Talkington, Samuel, Turizo, Daniel, Grijalva, Santiago, Fernandez, Jorge, Molzahn, Daniel K.

论文摘要

电压相位角度测量通常无法从分配网络和传输网络边界中的传感器中获得。因此,本文解决了基于传感器测量值的复杂(主动和反应性)电力注射的电压幅度敏感性的条件。这些敏感性代表了逆权流量雅各布的一量。我们扩展了先前的结果,以表明总线电压幅度相对于主动功率注射的敏感性是独一无二的,与反应能力相对于反应能力的敏感性是独一无二的。经典的牛顿 - 拉夫森功率流模型用于推导总线电压大小的新颖表示,作为活跃和反应性注射的不确定的线性算子;由公交功率因子参数化。确保在此不确定的线性系统中建立了两个确保在给定电压幅度的独特复合功率注射的条件,从而压缩了解决方案空间。第一个是基于公交功率因子的足够条件。第二个是基于系统特征值的必要条件。我们使用矩阵完成理论来开发估计方法,以恢复具有不同传感器可用性水平的灵敏度矩阵。仿真验证结果并证明了所提出方法的工程使用。

Voltage phase angle measurements are often unavailable from sensors in distribution networks and transmission network boundaries. Therefore, this paper addresses the conditions for estimating sensitivities of voltage magnitudes with respect to complex (active and reactive) electric power injections based on sensor measurements. These sensitivities represent submatrices of the inverse power flow Jacobian. We extend previous results to show that the sensitivities of a bus voltage magnitude with respect to active power injections are unique and different from those with respect to reactive power. The classical Newton-Raphson power flow model is used to derive a novel representation of bus voltage magnitudes as an underdetermined linear operator of the active and reactive power injections; parameterized by the bus power factors. Two conditions that ensure the existence of unique complex power injections given voltage magnitudes are established for this underdetermined linear system, thereby compressing the solution space. The first is a sufficient condition based on the bus power factors. The second is a necessary and sufficient condition based on the system eigenvalues. We use matrix completion theory to develop estimation methods for recovering sensitivity matrices with varying levels of sensor availability. Simulations verify the results and demonstrate engineering use of the proposed methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源