论文标题
MESHDQN:用于改善计算流体动力学网格的深度加固学习框架
MeshDQN: A Deep Reinforcement Learning Framework for Improving Meshes in Computational Fluid Dynamics
论文作者
论文摘要
网格划分是计算流体动力学(CFD)中稳定且准确的模拟所必需的至关重要但用户密集型的过程。网格生成通常是CFD管道中的瓶颈。自适应网格锻炼技术允许自动更新网格,以便为当前的问题提供准确的解决方案。现有的自适应网格划分的经典技术需要求解器,许多培训模拟或两者兼而有之。当前的机器学习技术通常需要大量的计算成本来生成培训数据,并且受培训数据流程的范围限制。 MESHDQN是作为通用的深度强化学习框架开发的,以迭代地划分,同时保留目标属性计算。基于图神经网络的深Q网络用于选择网格顶点以拆卸,解决方案插值用于在改进过程中的每个步骤中绕过昂贵的模拟。 MESHDQN需要在网格变形之前进行单个模拟,同时对流动方式,网格类型或求解器没有任何假设,只需要直接在CFD管道中修改网格的能力即可。 MeshDQN成功改善了两个2D机翼的网格。
Meshing is a critical, but user-intensive process necessary for stable and accurate simulations in computational fluid dynamics (CFD). Mesh generation is often a bottleneck in CFD pipelines. Adaptive meshing techniques allow the mesh to be updated automatically to produce an accurate solution for the problem at hand. Existing classical techniques for adaptive meshing require either additional functionality out of solvers, many training simulations, or both. Current machine learning techniques often require substantial computational cost for training data generation, and are restricted in scope to the training data flow regime. MeshDQN is developed as a general purpose deep reinforcement learning framework to iteratively coarsen meshes while preserving target property calculation. A graph neural network based deep Q network is used to select mesh vertices for removal and solution interpolation is used to bypass expensive simulations at each step in the improvement process. MeshDQN requires a single simulation prior to mesh coarsening, while making no assumptions about flow regime, mesh type, or solver, only requiring the ability to modify meshes directly in a CFD pipeline. MeshDQN successfully improves meshes for two 2D airfoils.