论文标题

通过解决机器学习分类问题获得可转移的化学见解问题:热力学特性预测,原子成分与库仑基质一样好

Obtaining transferable chemical insight from solving machine-learning classification problems: Thermodynamical properties prediction, atomic composition as good as Coulomb matrix

论文作者

Alday-Toledo, Leon, Bernal-Jaquez, Roberto, Zapotecas-Martinez, Saul, Mendoza-Cortes, Jose L.

论文摘要

机器学习(ML)可用于构建替代模型,以快速预测感兴趣的财产。因此,ML可以应用于化学项目,在该化学项目中,通常的实验或计算技术仅需一个样本即可花费数小时或数天。以这种方式,可以从广泛的数据库中提取最有希望的候选样本并进行进一步的深入分析。 尽管它们的适用性广泛,但必须将ML方法应用于给定的化学问题,因为必须做出多种设计决策,例如要使用的分子描述器或训练模型的优化器。 在这里,我们提出了一种通过分类实验对给定分子问题进行有意义探索的方法。从概念上讲,简单的方法会导致对所选问题的可转移见解,并可以用作估计预测难度,测试和完善的预测难度的平台,可以进行更精确或更精确或更雄心勃勃的项目。也可以获得理化的见解。 通过使用多个分子描述子来预测吉布斯的自由能,零点振动能和133,885有机分子的分子的预测,以133,885有机分子为例,可以说明这种方法。一个值得注意的结果是,对于我们提出的分类问题,低分辨率的描述符“原子组成” [Tchagang2019]几乎可以达到与高分辨率“分类库仑矩阵”(RUPP2012,MONTAVON2012,HANSEN2013,HANSEN2013](HANSEN2013]的训练)($> 90 $ $> 90 $),$ $)的分类率几乎与高分辨率的库仑矩阵'[RUPP2012,MONTAVON2012,hansen2012]相当。

Machine learning (ML) can be used to construct surrogate models for the fast prediction of a property of interest. ML can thus be applied to chemical projects, where the usual experimentation or calculation techniques can take hours or days for just one sample. In this manner, the most promising candidate samples could be extracted from an extensive database and subjected to further in-depth analysis. Despite their broad applicability, it can be challenging to apply ML methods to a given chemical problem since a multitude of design decisions must be made, such as the molecular descriptor to use or the optimizer to train the model. Here we present a methodology for the meaningful exploration of a given molecular problem through classification experiments. This conceptually simple methodology results in transferable insight on the selected problem and can be used as a platform from which prediction difficulty is estimated, molecular representations are tested and refined, and more precise or ambitious projects can be undertaken. Physicochemical insight can also be obtained. This methodology is illustrated through the use of multiple molecular descriptors for the prediction of enthalpy, Gibbs' free energy, zero-point vibrational energy, and constant-volume calorific capacity of the molecules from the public database QM9 [Ramakrishnan2014] with 133,885 organic molecules. A noteworthy result is that for the classification problem we propose, the low-resolution descriptor `atomic composition' [Tchagang2019] can reach a classification rate almost on par with the high-resolution `sorted Coulomb matrix' [Rupp2012,Montavon2012,Hansen2013] ($>90\%$), provided that an appropriate optimizer is used during training.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源