论文标题
通过不确定性取消自适应鲁棒模型预测控制
Adaptive Robust Model Predictive Control via Uncertainty Cancellation
论文作者
论文摘要
我们提出了一种基于学习的鲁棒预测控制算法,该算法可以补偿一类具有添加剂非线性组件的名义线性的离散时间系统的动力学的显着不确定性。这样的系统通常对未知环境对标称系统的非线性影响进行建模。我们优化了一类受到经典自适应控制中率先确定性的“估计和蛋白酶”控制定律启发的非线性反馈政策,以在存在大量的不确定性的情况下实现显着的绩效提高,在这种情况下,现有的基于学习的预测性控制算法通常难以保证安全。与鲁棒自适应MPC中的先前工作相反,我们的方法使我们能够利用通过功能近似在线学习的先验未知动力学中的结构(即数值预测)。我们的方法还将典型的非线性自适应控制方法扩展到具有状态和输入约束的系统,即使我们无法直接从动力学中取消添加剂不确定函数。我们应用现代统计估计技术来通过持续的约束满意度对高可能性进行确认。此外,我们建议使用贝叶斯元学习算法学习校准的模型先验,以帮助满足具有挑战性的设置中控制设计的假设。最后,我们在模拟中表明,与现有方法相比,我们的方法可以容纳更明显的未知动态术语,并且使用贝叶斯元学习可以使我们更快地适应测试环境。
We propose a learning-based robust predictive control algorithm that compensates for significant uncertainty in the dynamics for a class of discrete-time systems that are nominally linear with an additive nonlinear component. Such systems commonly model the nonlinear effects of an unknown environment on a nominal system. We optimize over a class of nonlinear feedback policies inspired by certainty equivalent "estimate-and-cancel" control laws pioneered in classical adaptive control to achieve significant performance improvements in the presence of uncertainties of large magnitude, a setting in which existing learning-based predictive control algorithms often struggle to guarantee safety. In contrast to previous work in robust adaptive MPC, our approach allows us to take advantage of structure (i.e., the numerical predictions) in the a priori unknown dynamics learned online through function approximation. Our approach also extends typical nonlinear adaptive control methods to systems with state and input constraints even when we cannot directly cancel the additive uncertain function from the dynamics. We apply contemporary statistical estimation techniques to certify the system's safety through persistent constraint satisfaction with high probability. Moreover, we propose using Bayesian meta-learning algorithms that learn calibrated model priors to help satisfy the assumptions of the control design in challenging settings. Finally, we show in simulation that our method can accommodate more significant unknown dynamics terms than existing methods and that the use of Bayesian meta-learning allows us to adapt to the test environments more rapidly.