论文标题
复杂的四分之一kontsevich模型的交叉点理论
Intersection theory of the complex quartic Kontsevich model
论文作者
论文摘要
我们在复杂曲线的模量空间上的相交数量方面扩展了Langmann-Szabo-Zarembo(LSZ)模型的相关函数。这为Chekhov-Eynard-orderin拓扑递归产生的相关功能的扩展提供了一个明确的,有动力的示例。为此,我们统一了文献中存在的符号以及存在的不同惯例,并使用了适合于物理动机模型的光谱曲线模量。演讲重点介绍了对作品的说明性,分步的理解。
We expand correlation functions of the Langmann-Szabo-Zarembo (LSZ) model in terms of intersection numbers on the moduli space of complex curves. This provides an explicit, physically motivated example for the expansion of correlation functions generated by Chekhov-Eynard-Orantin topological recursion. To this end, we unify notation as well as different conventions present in the literature and use a set of moduli of the spectral curve adapted to the physically motivated model. The presentation focuses on an illustrative, step-by-step comprehension of the work.