论文标题

天体扭曲器振幅

Celestial Twistor Amplitudes

论文作者

Brown, Graham R., Gowdy, Joshua, Spence, Bill

论文摘要

我们展示了如何在Yang-Mills(YM)和重力中制定天体扭曲器振幅。这是由扭曲转换与边界洛伦兹CFT中的光变换之间的精致全息相应的动机。然后,所得的幅度等于天圆环上的光转换相关器。使用扭曲器和双重扭曲变量的灵巧基础,我们得出了三点和四点YM的公式以及重力振幅。在基本功能方面,四点振幅采用特别简单的形式,在YM和重力表达式之间具有惊人的对应关系。我们得出了Celestial Twistor BCFW递归关系,并展示了如何使用这些关系来生成四点YM振幅,从而阐明了其从三点幅度继承的结构,并为计算较高多重光转化的相关器的计算铺平了道路。在我们的整个计算过程中,我们利用了拆分签名的边界结构的独特属性,为了适当激励和突出这些属性,我们首先在洛伦兹签名中开发了我们的方法论。这也使我们能够证明洛伦兹(Lorentzian)签名中的傅立叶变换与欧几里得边界CFT中的阴影变换之间的全息对应关系。

We show how to formulate celestial twistor amplitudes in Yang-Mills (YM) and gravity. This is motivated by a refined holographic correspondence between the twistor transform and the light transform in the boundary Lorentzian CFT. The resulting amplitudes are then equivalent to light transformed correlators on the celestial torus. Using an ambidextrous basis of twistor and dual twistor variables, we derive formulae for the three and four-point YM and gravity amplitudes. The four-point amplitudes take a particularly simple form in terms of elementary functions, with a striking correspondence between the YM and gravity expressions. We derive celestial twistor BCFW recursion relations and show how these may be used to generate the four-point YM amplitude, illuminating the structure it inherits from the three-point amplitude and paving the way for the calculation of higher multiplicity light transformed correlators. Throughout our calculations we utilise the unique properties of the boundary structure of split signature, and in order to properly motivate and highlight these properties we first develop our methodology in Lorentzian signature. This also allows us to prove a holographic correspondence between Fourier transforms in Lorentzian signature and shadow transforms in the Euclidean boundary CFT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源