论文标题
增强现实的资源分配授权的车辆边缘元元
Resource Allocation for Augmented Reality Empowered Vehicular Edge Metaverse
论文作者
论文摘要
Metavers被认为是下一代网络的演变,为用户提供了在物理和数字之间的交集的经验。增强现实(AR)是Metaverse中的主要支持技术之一,它可以将真实信息与虚拟世界信息无缝整合,以为用户提供沉浸式的互动体验。非凡的AR为协助安全驾驶带来了新的机会。然而,实现AR任务的有效执行并增加了系统收入是Metaverse的AR车载应用程序所面临的主要挑战。在本文中,我们是第一个为AR授权的车辆边缘元元的有效资源分配框架提出有效的资源分配框架,以改善系统实用程序。我们制定了一个优化问题,其中具有多维控制,以同时最大化元操作员侧的数据实用程序,并最大程度地减少车辆方面的能源消耗,该方面共同考虑了Metaverse Server上的计算资源分配,而AR AR Vehicles的CPU频率,发射电源和计算模型大小。尽管如此,主要障碍是如何设计有效的算法以获得优化的解决方案。因此,我们通过解耦优化变量来做到这一点。我们首先通过二进制搜索来得出最佳计算模型的大小,然后通过双分配方法获得最佳功率分配,并找到对AR车辆的最佳CPU频率的封闭形式解决方案,最后,通过Lagrangian Dual方法获得了服务器上计算资源的最佳分配。为了估计我们提出的计划的表现,我们建立了三个基线方案作为比较,模拟表明我们的建议计划平衡了操作员的奖励和车辆的能耗。
Metaverse is considered to be the evolution of the next-generation networks, providing users with experience sharing at the intersection between physical and digital. Augmented reality (AR) is one of the primary supporting technologies in the Metaverse, which can seamlessly integrate real-world information with virtual world information to provide users with an immersive interactive experience. Extraordinarily, AR has brought new opportunities for assisting safe driving. Nevertheless, achieving efficient execution of AR tasks and increasing system revenue are the main challenges faced by the Metaverse's AR in-vehicle applications. In this paper, we are the first to propose an efficient resource allocation framework for AR-empowered vehicular edge Metaverse to improve system utility. We formulate an optimization problem featuring multidimensional control to concurrently maximize data utility at the Metaverse operator side and minimize energy consumption at the vehicles' side, which jointly considers the computational resource allocation on the Metaverse server, and AR vehicles' CPU frequency, transmit power, and computation model size. Notwithstanding, the major impediment is how to design an efficient algorithm to obtain the solutions of the optimization. Wherefore, we do this by decoupling the optimization variables. We first derive the optimal computation model size by the binary search, followed by obtaining the optimal power allocation by the bisection method and finding a closed-form solution to the optimal CPU frequency of AR vehicles, and finally, attain the optimal allocation of computational resource on the server by the Lagrangian dual method. To estimate the performance of our proposed scheme, we establish three baseline schemes as a comparison, and simulation manifests that our proposed scheme balances the operator's reward and the energy consumption of vehicles.