论文标题

Gibbs-Helmholtz图神经网络:捕获无限稀释时活性系数的温度依赖性

Gibbs-Helmholtz Graph Neural Network: capturing the temperature dependency of activity coefficients at infinite dilution

论文作者

Medina, Edgar Ivan Sanchez, Linke, Steffen, Stoll, Martin, Sundmacher, Kai

论文摘要

化合物中化合物的物理化学特性的准确预测(例如,无限稀释时的活性系数$γ_{ij}^\ infty $)对于开发新颖和更可持续的化学过程至关重要。在这项工作中,我们分析了以前基于GNN的模型的性能,以预测$γ_{IJ}^\ infty $,并将它们与9个等温度研究中的多个机械模型进行了比较。此外,我们开发了Gibbs-Helmholtz图神经网络(GH-GNN)模型,以预测不同温度下分子系统的$ \lnγ_{IJ}^\ infty $。我们的方法结合了Gibbs-Helmholtz衍生的表达的简单性与一系列图形神经网络,这些神经网络结合了明确的分子和分子间描述符,以捕获分散和氢键效应。我们已经使用实验确定的$ \lnγ_{ij}^\ infty $数据培训了该模型的40,219个二进制系统,涉及1032溶质和866个溶剂,总体表现出与流行的Unifac-Dortmund模型相比的表现优越。我们分析了GH-GNN的连续和离散间/外推的性能,并为模型的适用性域和预期准确性提供指示。通常,如果至少25个具有相同溶质 - 溶剂化学类别组合的系统包含在训练集中,并且还存在高于0.35的相似性指标,则GH-GNN能够对外推二元系统产生准确的预测。该模型及其适用性域建议已在https://github.com/edgarsmdn/gh-gnn上进行开源。

The accurate prediction of physicochemical properties of chemical compounds in mixtures (such as the activity coefficient at infinite dilution $γ_{ij}^\infty$) is essential for developing novel and more sustainable chemical processes. In this work, we analyze the performance of previously-proposed GNN-based models for the prediction of $γ_{ij}^\infty$, and compare them with several mechanistic models in a series of 9 isothermal studies. Moreover, we develop the Gibbs-Helmholtz Graph Neural Network (GH-GNN) model for predicting $\ln γ_{ij}^\infty$ of molecular systems at different temperatures. Our method combines the simplicity of a Gibbs-Helmholtz-derived expression with a series of graph neural networks that incorporate explicit molecular and intermolecular descriptors for capturing dispersion and hydrogen bonding effects. We have trained this model using experimentally determined $\ln γ_{ij}^\infty$ data of 40,219 binary-systems involving 1032 solutes and 866 solvents, overall showing superior performance compared to the popular UNIFAC-Dortmund model. We analyze the performance of GH-GNN for continuous and discrete inter/extrapolation and give indications for the model's applicability domain and expected accuracy. In general, GH-GNN is able to produce accurate predictions for extrapolated binary-systems if at least 25 systems with the same combination of solute-solvent chemical classes are contained in the training set and a similarity indicator above 0.35 is also present. This model and its applicability domain recommendations have been made open-source at https://github.com/edgarsmdn/GH-GNN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源