论文标题
基于熵的偏见后,降低了具有嘈杂标签的数据集偏差的强大训练方法
Denoising after Entropy-based Debiasing A Robust Training Method for Dataset Bias with Noisy Labels
论文作者
论文摘要
构造不当的数据集可能导致推断不准确。例如,在偏置数据集中训练的模型在概括(即数据集偏置)方面的性能差。最近的偏见技术已通过低估了易于学习的样本(即,偏见的样本)并突出了难以学习的样本(即偏置冲突的样本),成功地实现了概括性能。但是,由于嘈杂的标签,这些技术可能会失败,因为训练有素的模型将嘈杂的标签识别为难以学习的标签,因此突出了它们。在这项研究中,我们发现使用提供标签来量化难度的早期方法可能会受到少量嘈杂标签的影响。此外,我们发现在脱词之前运行降级算法是无效的,因为降低算法减少了难以学习的样本的影响,包括有价值的偏见造成的样本。因此,我们提出了一种在基于熵的词汇后,即DENEB的方法,即具有三个主要阶段的Deneb。 (1)偏见模型是通过强调(偏置,干净)样品的训练,这些样品是使用高斯混合模型选择的。 (2)使用偏见模型输出的按样本熵进行计算,每个样本的采样概率与熵成比例。 (3)最终模型是使用现有的Denoising算法训练的,该算法通过遵循计算的采样概率来构建的微型批次。与现有的偏见和降级算法相比,我们的方法在多个基准测试中实现了更好的偏见性能。
Improperly constructed datasets can result in inaccurate inferences. For instance, models trained on biased datasets perform poorly in terms of generalization (i.e., dataset bias). Recent debiasing techniques have successfully achieved generalization performance by underestimating easy-to-learn samples (i.e., bias-aligned samples) and highlighting difficult-to-learn samples (i.e., bias-conflicting samples). However, these techniques may fail owing to noisy labels, because the trained model recognizes noisy labels as difficult-to-learn and thus highlights them. In this study, we find that earlier approaches that used the provided labels to quantify difficulty could be affected by the small proportion of noisy labels. Furthermore, we find that running denoising algorithms before debiasing is ineffective because denoising algorithms reduce the impact of difficult-to-learn samples, including valuable bias-conflicting samples. Therefore, we propose an approach called denoising after entropy-based debiasing, i.e., DENEB, which has three main stages. (1) The prejudice model is trained by emphasizing (bias-aligned, clean) samples, which are selected using a Gaussian Mixture Model. (2) Using the per-sample entropy from the output of the prejudice model, the sampling probability of each sample that is proportional to the entropy is computed. (3) The final model is trained using existing denoising algorithms with the mini-batches constructed by following the computed sampling probability. Compared to existing debiasing and denoising algorithms, our method achieves better debiasing performance on multiple benchmarks.