论文标题
Ripple:基于概念的原始时间序列模型的解释
RIPPLE: Concept-Based Interpretation for Raw Time Series Models in Education
论文作者
论文摘要
时间序列是用于教育预测任务的输入数据最普遍的形式。使用时间序列数据的绝大多数研究集中在专家设计的手工制作的功能上,以预测性能和解释性。但是,提取这些特征是人类和计算机的劳动力密集型。在本文中,我们提出了一种方法,该方法利用图形神经网络使用不规则的多元时间序列建模,以与手工制作的功能相比,使用原始时间序列sclipstreams获得可比或更高的准确性。此外,我们将概念激活向量扩展为原始时间序列模型中的可解释性。我们分析了教育领域的这些进步,解决了针对下游目标干预和教学支持的早期学生绩效预测的任务。我们对23个MOOC的实验分析,其中数百万个在六个行为方面的合并相互作用表明,使用我们的方法设计的模型可以(i)击败没有特征提取的最先进的教育时间序列基线,并且(ii)为个性化干预提供了可解释的见解。源代码:https://github.com/epfl-ml4ed/ripple/。
Time series is the most prevalent form of input data for educational prediction tasks. The vast majority of research using time series data focuses on hand-crafted features, designed by experts for predictive performance and interpretability. However, extracting these features is labor-intensive for humans and computers. In this paper, we propose an approach that utilizes irregular multivariate time series modeling with graph neural networks to achieve comparable or better accuracy with raw time series clickstreams in comparison to hand-crafted features. Furthermore, we extend concept activation vectors for interpretability in raw time series models. We analyze these advances in the education domain, addressing the task of early student performance prediction for downstream targeted interventions and instructional support. Our experimental analysis on 23 MOOCs with millions of combined interactions over six behavioral dimensions show that models designed with our approach can (i) beat state-of-the-art educational time series baselines with no feature extraction and (ii) provide interpretable insights for personalized interventions. Source code: https://github.com/epfl-ml4ed/ripple/.