论文标题

几乎是赫尔米利亚流形和kähler歧管上的四分之一对称连接

Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold

论文作者

Zlatanović, Milan, Maksimović, Miroslav

论文摘要

该论文将几乎是隐士的流形观察到了普遍的Riemannian歧管的一个例子,并研究了在几乎Hermitian歧管上的四分之一对称连接的应用。几乎具有四分之一对称性连接的几乎赫米尔人的歧管,保留了普遍的riemannian指标实际上是Kähler歧管。观察六个线性独立的曲率张量相对于四分之一对称的连接,我们构造了不依赖四分之一对称连接发生器的张量。其中之一与对称度量$ g $的Weyl射击曲率张量相吻合。同样,我们获得了Weyl射斑曲线张量与霍明型弹性曲率张量之间的关系。此外,当某些张量是杂种时,我们检查了曲率张量的性能。

The paper observes an almost Hermitian manifold as an example of a generalized Riemannian manifold and examines the application of a quarter-symmetric connection on the almost Hermitian manifold. The almost Hermitian manifold with quarter-symmetric connection preserving the generalized Riemannian metric is actually the Kähler manifold. Observing the six linearly independent curvature tensors with respect to the quarter-symmetric connection, we construct tensors that do not depend on the quarter-symmetric connection generator. One of them coincides with the Weyl projective curvature tensor of symmetric metric $g$. Also, we obtain the relations between the Weyl projective curvature tensor and the holomorphically projective curvature tensor. Moreover, we examine the properties of curvature tensors when some tensors are hybrid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源