论文标题
几乎是赫尔米利亚流形和kähler歧管上的四分之一对称连接
Quarter-symmetric connection on an almost Hermitian manifold and on a Kähler manifold
论文作者
论文摘要
该论文将几乎是隐士的流形观察到了普遍的Riemannian歧管的一个例子,并研究了在几乎Hermitian歧管上的四分之一对称连接的应用。几乎具有四分之一对称性连接的几乎赫米尔人的歧管,保留了普遍的riemannian指标实际上是Kähler歧管。观察六个线性独立的曲率张量相对于四分之一对称的连接,我们构造了不依赖四分之一对称连接发生器的张量。其中之一与对称度量$ g $的Weyl射击曲率张量相吻合。同样,我们获得了Weyl射斑曲线张量与霍明型弹性曲率张量之间的关系。此外,当某些张量是杂种时,我们检查了曲率张量的性能。
The paper observes an almost Hermitian manifold as an example of a generalized Riemannian manifold and examines the application of a quarter-symmetric connection on the almost Hermitian manifold. The almost Hermitian manifold with quarter-symmetric connection preserving the generalized Riemannian metric is actually the Kähler manifold. Observing the six linearly independent curvature tensors with respect to the quarter-symmetric connection, we construct tensors that do not depend on the quarter-symmetric connection generator. One of them coincides with the Weyl projective curvature tensor of symmetric metric $g$. Also, we obtain the relations between the Weyl projective curvature tensor and the holomorphically projective curvature tensor. Moreover, we examine the properties of curvature tensors when some tensors are hybrid.