论文标题
椭圆属的刚性二型歧管的刚性
Rigidity of elliptic genera for non-spin manifolds
论文作者
论文摘要
我们讨论椭圆属对非旋转歧管的刚性,其中$ s^1 $ -Action。我们表明,如果$ m $的通用覆盖物是旋转的,那么$ m $的通用椭圆属是严格的。此外,我们表明,没有任何条件仅取决于$π_2(m)$,可以保证$ m $的通用覆盖率是非旋转的。
We discuss the rigidity of elliptic genera for non-spin manifolds $M$ with $S^1$-action. We show that if the universal covering of $M$ is spin, then the universal elliptic genus of $M$ is rigid. Moreover, we show that there is no condition which only depends on $π_2(M)$ that guarantees the rigidity in the case that the universal covering of $M$ is non-spin.