论文标题
耦合Kähler-Einstein和Hermitian-Yang-Mills方程
Coupled Kähler-Einstein and Hermitian-Yang-Mills equations
论文作者
论文摘要
我们引入了一个新的方程式系统,耦合Kähler-Einstein和Hermitian-Yang-Mills方程。我们提供了这些方程式的矩图解释。我们确定了一种futaki型不变性,以阻碍这些方程式存在的解决方案。我们还证明了一种哑光 - 莱希诺维奇类型定理。我们证明了一个变形结果,在某些条件下会产生这些方程式的非平凡解。我们使用Calabi Ansatz在某些投影捆绑包上产生示例。
We introduce a new system of equations coupling Kähler-Einstein and Hermitian-Yang-Mills equations. We provide a moment map interpretation of these equations. We identify a Futaki type invariant as an obstruction to the existence of solutions to these equations. We also prove a Matsushima-Lichnerowicz type theorem. We prove a deformation result that produces nontrivial solutions of these equations under some conditions. We produce examples on some projective bundles using Calabi ansatz.