论文标题

Al-Igan:基于TBM操作数据的隧道地质重建的主动学习框架

AL-iGAN: An Active Learning Framework for Tunnel Geological Reconstruction Based on TBM Operational Data

论文作者

Wang, Hao, Liu, Lixue, Song, Xueguan, Zhang, Chao, Tao, Dacheng

论文摘要

在隧道钻孔机(TBM)地下项目中,对隧道中分布的岩石类型的准确描述可以降低施工风险(例如{\ it,例如{\ it,例如}表面沉降和滑坡)并提高建筑效率。在本文中,我们提出了一个基于TBM操作数据的主动学习框架,称为Al-Igan,用于隧道地质重建。该框架包含两个主要部分:一种是使用主动学习技术的用法,用于推荐新的钻井位置以标记TBM操作数据,然后形成新的培训样本;另一个是地质重建(Igan-gr)的增量生成对抗网络,可以通过使用新样本来逐步更新其权重以提高重建性能。数值实验也验证了所提出的框架的有效性。

In tunnel boring machine (TBM) underground projects, an accurate description of the rock-soil types distributed in the tunnel can decrease the construction risk ({\it e.g.} surface settlement and landslide) and improve the efficiency of construction. In this paper, we propose an active learning framework, called AL-iGAN, for tunnel geological reconstruction based on TBM operational data. This framework contains two main parts: one is the usage of active learning techniques for recommending new drilling locations to label the TBM operational data and then to form new training samples; and the other is an incremental generative adversarial network for geological reconstruction (iGAN-GR), whose weights can be incrementally updated to improve the reconstruction performance by using the new samples. The numerical experiment validate the effectiveness of the proposed framework as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源