论文标题
BIM对象分类的几何关系深度学习框架
A Geometric-Relational Deep Learning Framework for BIM Object Classification
论文作者
论文摘要
互操作性问题是构建信息建模(BIM)的重要问题。对象类型是在多个BIM应用程序(例如扫描到BIM和代码合规性检查)中所需的一种关键语义信息,在交换BIM数据或使用其他域软件创建模型时也会受到损失。可以使用深度学习来补充它。当前的深度学习方法主要从BIM对象的形状信息中学习进行分类,而在BIM上下文中固有的关系信息未使用。为了解决这个问题,我们介绍了一个两分的几何关系深度学习框架。它通过关系信息增强了先前的几何分类方法。我们还提供一个BIM对象数据集IFCNET ++,其中包含有关对象的几何信息和关系信息。实验表明,我们的框架可以灵活地适应不同的几何方法。关系特征确实是一般几何学习方法的加成,显然改善了其分类性能,从而减少了检查模型的手动劳动并提高了丰富的BIM模型的实际价值。
Interoperability issue is a significant problem in Building Information Modeling (BIM). Object type, as a kind of critical semantic information needed in multiple BIM applications like scan-to-BIM and code compliance checking, also suffers when exchanging BIM data or creating models using software of other domains. It can be supplemented using deep learning. Current deep learning methods mainly learn from the shape information of BIM objects for classification, leaving relational information inherent in the BIM context unused. To address this issue, we introduce a two-branch geometric-relational deep learning framework. It boosts previous geometric classification methods with relational information. We also present a BIM object dataset IFCNet++, which contains both geometric and relational information about the objects. Experiments show that our framework can be flexibly adapted to different geometric methods. And relational features do act as a bonus to general geometric learning methods, obviously improving their classification performance, thus reducing the manual labor of checking models and improving the practical value of enriched BIM models.