论文标题
使用谐振光束的双眼定位
Binocular Localization Using Resonant Beam
论文作者
论文摘要
精确地在室内场景中找到移动设备是一项艰巨的任务,因为在复杂的环境中具有信号衍射和反射。一个至关重要的原因导致定位性能恶化是沿着定位信号的传播路径的必然功率耗散。在本文中,我们提出了一个基于共振光束系统(RB)和双眼视觉的高临界性定位方案,即基于双眼的谐振束定位(BRBL)。 BRBL系统利用RB的能量浓缩和自我对准的传播来实现高效率信号传播和目标的自我定位。将双眼方法与RBS结合使用,以首次获得目标的三维(3-D)坐标。为了展示本地化机制,我们首先详细介绍了双眼定位模型,包括带有RBS的双眼方法的谐振光束传递分析和几何衍生。然后,我们建立了RB的功率模型,分别建立了光束斑点成像的信号和噪声模型,以分析BRBL系统的性能。最后,数值结果显示出厘米水平准确性的出色表现(即$ <5 \ 5 \ mathrm {cm} $ in $ 0.4 \ MATHRM {M} $ width和$ 0.4 \ MATHRM {M MATHRM {M} $长度有效范围在$ 1 \ MATHRM {M} $垂直距离,$垂直$ <13 \ MATHRM} $ 0.6 \ mathrm {m} $宽度和$ 0.6 \ mathrm {m} $长度有效范围在$ 2 \ mathrm {m} $垂直距离),适用于室内场景。
Locating mobile devices precisely in indoor scenarios is a challenging task because of the signal diffraction and reflection in complicated environments. One vital cause deteriorating the localization performance is the inevitable power dissipation along the propagation path of localization signals. In this paper, we propose a high-accuracy localization scheme based on the resonant beam system (RBS) and the binocular vision, i.e., binocular based resonant beam localization (BRBL). The BRBL system utilizes the energy-concentrated and self-aligned transmission of RBS to realize high-efficiency signal propagation and self-positioning for the target. The binocular method is combined with RBS to obtain the three-dimensional (3-D) coordinates of the target for the first time. To exhibit the localization mechanism, we first elaborate on the binocular localization model, including the resonant beam transmission analysis and the geometric derivation of the binocular method with RBS. Then, we establish the power model of RBS, and the signal and noise models of beam spot imaging, respectively, to analyse the performance of the BRBL system. Finally, the numerical results show an outstanding performance of centimeter level accuracy (i.e., $<5\mathrm{cm}$ in $0.4\mathrm{m}$ width and $0.4\mathrm{m}$ length effective range at $1\mathrm{m}$ vertical distance, $<13\mathrm{cm}$ in $0.6\mathrm{m}$ width and $0.6\mathrm{m}$ length effective range at $2\mathrm{m}$ vertical distance), which applies to indoor scenarios.