论文标题
无限尺寸的扩散生成模型
Diffusion Generative Models in Infinite Dimensions
论文作者
论文摘要
扩散生成模型最近已应用于可以将可用数据视为基础函数的离散化的域,例如音频信号或时间序列。但是,这些模型直接基于离散数据,并且在建模过程中没有语义将观察到的数据与基础函数形式相关联。我们将扩散模型推广到通过在希尔伯特空间上的高斯度量方面开发此类模型的基础理论,直接在功能空间中运行。我们功能空间观点的一个重要好处是,它允许我们明确指定我们正在工作的功能空间,这使我们开发了Sobolev空间中扩散生成建模的方法。我们的方法使我们能够执行无条件和条件生成功能值数据的数据。我们演示了几种合成和现实基准测试的方法。
Diffusion generative models have recently been applied to domains where the available data can be seen as a discretization of an underlying function, such as audio signals or time series. However, these models operate directly on the discretized data, and there are no semantics in the modeling process that relate the observed data to the underlying functional forms. We generalize diffusion models to operate directly in function space by developing the foundational theory for such models in terms of Gaussian measures on Hilbert spaces. A significant benefit of our function space point of view is that it allows us to explicitly specify the space of functions we are working in, leading us to develop methods for diffusion generative modeling in Sobolev spaces. Our approach allows us to perform both unconditional and conditional generation of function-valued data. We demonstrate our methods on several synthetic and real-world benchmarks.