论文标题
使用层次B-Splines对多物质和多物理问题的扩展等质分析
Extended isogeometric analysis of multi-material and multi-physics problems using hierarchical B-splines
论文作者
论文摘要
本文介绍了一种浸入式的等几何有限元元素框架,以预测使用局部精制离散化的多物质,多物理问题与复杂几何形状的响应。为了规避生成保形网格的需求,此工作使用扩展有限元方法(XFEM)来离散不合格的嵌入网格上的管理方程。提出了一种灵活的方法来创建截断的层次B-Splines离散化。此方法使每个状态变量字段的细化能够分别满足特定于现场的精度要求。为了获得在所有层次完善的B-Spline离散化中一致的浸入几何表示,几何形状浸入了单个网格,即XFEM背景网格,该网格是由所有层次B-Spline网格的结合而构建的。引入了提取操作员,以表示XFEM背景网格上的Lagrange Shape函数而没有准确性损失的Lagrange Shape函数来表示截断的层次B-Spline碱基。使用广义的重质富集策略来富含截短的层次B-Spline碱基,以适应小的几何特征和多物质问题。用于局部精制的B-Spline碱基的面部面向幽灵稳定的配方增强了管理方程。我们介绍了二维线性弹性和热弹性问题的例子。数值结果验证了我们框架的准确性。结果还证明了所提出的框架对大的,几何复杂的问题的适用性。
This paper presents an immersed, isogeometric finite element framework to predict the response of multi-material, multi-physics problems with complex geometries using locally refined discretizations. To circumvent the need to generate conformal meshes, this work uses an eXtended Finite Element Method (XFEM) to discretize the governing equations on non-conforming, embedding meshes. A flexible approach to create truncated hierarchical B-splines discretizations is presented. This approach enables the refinement of each state variable field individually to meet field-specific accuracy requirements. To obtain an immersed geometry representation that is consistent across all hierarchically refined B-spline discretizations, the geometry is immersed into a single mesh, the XFEM background mesh, which is constructed from the union of all hierarchical B-spline meshes. An extraction operator is introduced to represent the truncated hierarchical B-spline bases in terms of Lagrange shape functions on the XFEM background mesh without loss of accuracy. The truncated hierarchical B-spline bases are enriched using a generalized Heaviside enrichment strategy to accommodate small geometric features and multi-material problems. The governing equations are augmented by a formulation of the face-oriented ghost stabilization enhanced for locally refined B-spline bases. We present examples for two- and three-dimensional linear elastic and thermo-elastic problems. The numerical results validate the accuracy of our framework. The results also demonstrate the applicability of the proposed framework to large, geometrically complex problems.