论文标题

通过重复的量子相估计测量值

Resource-frugal Hamiltonian eigenstate preparation via repeated quantum phase estimation measurements

论文作者

Meister, Richard, Benjamin, Simon C.

论文摘要

哈密​​顿特征状态的制备对于量子计算中的许多应用至关重要。可以做到这一点的效率具有关键利益。规范方法利用量子相估计(QPE)算法。我们采用该方法的变体的想法来实施一种资源柔和的迭代方案,并为各种可用信息和工具的复杂性(仿真时间成本)提供分析界。我们提出并表征涉及对目标哈密顿量的修改以提高整体效率的扩展。然后,通过准备Lih和H $ _2 $的第二个量化的哈密顿人的基态来证明所提出的方法和边界;我们使用模拟量子计算机报告了理想和嘈杂实现的性能。融合通常比边界所建议的要快得多,而定性特征则被验证。

The preparation of Hamiltonian eigenstates is essential for many applications in quantum computing; the efficiency with which this can be done is of key interest. A canonical approach exploits the quantum phase estimation (QPE) algorithm. We adopt ideas from variants of this method to implement a resource-frugal iterative scheme, and provide analytic bounds on the complexity (simulation time cost) for various cases of available information and tools. We propose and characterise an extension involving a modification of the target Hamiltonian to increase overall efficiency. The presented methods and bounds are then demonstrated by preparing the ground state of the Hamiltonians of LiH and H$_2$ in second quantisation; we report the performance of both ideal and noisy implementations using simulated quantum computers. Convergence is generally achieved much faster than the bounds suggest, while the qualitative features are validated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源