论文标题

得分雅各布链链:提起预估计的2D扩散模型

Score Jacobian Chaining: Lifting Pretrained 2D Diffusion Models for 3D Generation

论文作者

Wang, Haochen, Du, Xiaodan, Li, Jiahao, Yeh, Raymond A., Shakhnarovich, Greg

论文摘要

扩散模型学会了预测梯度的向量场。我们建议将链条规则应用于学习的梯度,并通过可区分渲染器的Jacobian将扩散模型的得分进行后传达,我们将其实例化为Voxel辐射场。该设置在多个摄像机视图上汇总2D分数为3D分数,并重新利用了3D数据生成的据预定的2D模型。我们确定了本应用程序中出现的分配不匹配的技术挑战,并提出了一种新颖的估计机制来解决它。我们在几个现成的扩散图像生成模型上运行算法,包括在大型Laion数据集上训练的最近发布的稳定扩散。

A diffusion model learns to predict a vector field of gradients. We propose to apply chain rule on the learned gradients, and back-propagate the score of a diffusion model through the Jacobian of a differentiable renderer, which we instantiate to be a voxel radiance field. This setup aggregates 2D scores at multiple camera viewpoints into a 3D score, and repurposes a pretrained 2D model for 3D data generation. We identify a technical challenge of distribution mismatch that arises in this application, and propose a novel estimation mechanism to resolve it. We run our algorithm on several off-the-shelf diffusion image generative models, including the recently released Stable Diffusion trained on the large-scale LAION dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源