论文标题
用于高能GRB的多碰撞内部冲击钩ladronic模型
Multi-collision internal shock lepto-hadronic models for energetic GRBs
论文作者
论文摘要
对于能量伽玛射线爆发(GRB)的亚群,中等的重型载荷可能足以为超高能量宇宙射线(UHECRS)提供动力。在此激励的情况下,我们研究了能量GRB的迅速阶段宇宙射线质子的辐射特征。我们的框架是内部冲击模型,具有相对论喷射的多碰撞描述(沿喷气机具有不同的发射区域),以及光子和中微子光谱的时间依赖性计算。我们的GRB原型是由{\ em fermi} -lat检测到的GRB(包括GRB〜221009A)的动机,此外,由于较大的能量通量,单个事件的中微子非观察可能会对Baryonic载荷构成很大的限制。我们研究质子对同步岩和逆转池主导的场景中电磁光谱的反馈,以识别多波长的特征,以限制最大的允许的允许的baryonic载荷,并指出HADROCON和倒数康普顿和倒数compterronic和倒数compteration的差异。我们发现,在同步加速器方案中,光学量的相关磁通量似乎是相关的磁通量增加与软X射线的相关磁通量增加,而GEV与TEV Gamma-ray范围相关,而TEV伽马射线范围则是相关的磁通量,而在逆康普顿(Compton)占主导地位的情景中很难识别它们。我们证明,满足UHECR能量需求的10个左右的重载量不会扭曲{\ em fermi} -GBM范围中的预测光子光谱,如果碰撞半径足够大(即时间变异性不太短),则与中微子数据的约束相一致。因此,似乎是合理的,在大耗散半径的条件下,一个能量的GRB可以是UHECR的起源。
For a sub-population of energetic Gamma-Ray Bursts (GRBs), a moderate baryonic loading may suffice to power Ultra-High-Energy Cosmic Rays (UHECRs). Motivated by this, we study the radiative signatures of cosmic-ray protons in the prompt phase of energetic GRBs. Our framework is the internal shock model with multi-collision descriptions of the relativistic ejecta (with different emission regions along the jet), plus time-dependent calculations of photon and neutrino spectra. Our GRB prototypes are motivated by {\em Fermi}-LAT detected GRBs (including GRB~221009A) for which further, owing to the large energy flux, neutrino non-observation of single events may pose a strong limit on the baryonic loading. We study the feedback of protons on electromagnetic spectra in synchrotron- and inverse Compton-dominated scenarios to identify the multi-wavelength signatures, to constrain the maximally allowed baryonic loading, and to point out the differences between hadronic and inverse Compton signatures. We find that hadronic signatures appear as correlated flux increases in the optical-UV to soft X-ray and GeV to TeV gamma-ray ranges in the synchrotron scenarios, whereas they are difficult to identify in inverse Compton-dominated scenarios. We demonstrate that baryonic loadings around 10, which satisfy the UHECR energetic requirements, do not distort the predicted photon spectra in the {\em Fermi}-GBM range and are consistent with constraints from neutrino data if the collision radii are large enough (i.e., the time variability is not too short). It therefore seems plausible that under the condition of large dissipation radii a population of energetic GRBs can be the origin of the UHECRs.