论文标题
通用量子电路的指数增长家族
An exponentially-growing family of universal quantum circuits
论文作者
论文摘要
量子机学习已成为越来越兴趣的领域,但具有某些理论和硬件特定的限制。值得注意的是,消失的梯度或贫瘠的高原问题使得无法进行高量子计数的电路不可能进行训练,从而限制了数据科学家可以用于解决问题的Qubits数量。独立地,显示角度的监督量子神经网络显示出产生截短的傅立叶系列,其程度直接取决于两个因素:编码的深度和所应用的编码的平行量子数。傅立叶序列的程度限制了模型的表达性。这项工作介绍了两个新体系结构,它们的傅立叶度呈指数增长:顺序和并行指数量子机学习体系结构。这是通过在编码时有效地使用可用的希尔伯特空间来完成的,从而增加了量子编码的表达性。因此,指数增长允许保持低量的限制,以创建高度表达的电路,以避免贫瘠的高原。实际上,通过在一维测试问题中将其最终的均方根误差值减少多达44.7%,可以证明并行指数体系结构胜过现有的线性体系结构。此外,该技术的可行性也显示在一个被困的离子量子处理单元上。
Quantum machine learning has become an area of growing interest but has certain theoretical and hardware-specific limitations. Notably, the problem of vanishing gradients, or barren plateaus, renders the training impossible for circuits with high qubit counts, imposing a limit on the number of qubits that data scientists can use for solving problems. Independently, angle-embedded supervised quantum neural networks were shown to produce truncated Fourier series with a degree directly dependent on two factors: the depth of the encoding and the number of parallel qubits the encoding applied to. The degree of the Fourier series limits the model expressivity. This work introduces two new architectures whose Fourier degrees grow exponentially: the sequential and parallel exponential quantum machine learning architectures. This is done by efficiently using the available Hilbert space when encoding, increasing the expressivity of the quantum encoding. Therefore, the exponential growth allows staying at the low-qubit limit to create highly expressive circuits avoiding barren plateaus. Practically, parallel exponential architecture was shown to outperform the existing linear architectures by reducing their final mean square error value by up to 44.7% in a one-dimensional test problem. Furthermore, the feasibility of this technique was also shown on a trapped ion quantum processing unit.