论文标题

Xtrimoabfold:de从没有MSA的从头抗体结构预测

xTrimoABFold: De novo Antibody Structure Prediction without MSA

论文作者

Wang, Yining, Gong, Xumeng, Li, Shaochuan, Yang, Bing, Sun, YiWu, Shi, Chuan, Wang, Yangang, Yang, Cheng, Li, Hui, Song, Le

论文摘要

在抗体工程领域,一项必不可少的任务是设计一种新型抗体,该抗体的寄生虫结合具有正确表位的特定抗原。了解抗体结构及其副膜可以促进对其功能的机械理解。因此,仅其序列的抗体结构预测一直是从头抗体设计的高度有价值的问题。 Alphafold2是结构生物学领域的突破,为基于蛋白质序列和计算昂贵的协同进化的多个序列比对(MSA)的蛋白质结构提供了一种解决方案。但是,抗体的计算效率和不良预测的准确性,尤其是在抗体的互补区域(CDR)上,限制了其在工业高通量药物设计中的应用。为了学习抗体的信息表示,我们通过变压器模型对观察到的抗体空间数据库的策划序列采用了深层抗体语言模型(ALM)。我们还开发了一种名为Xtrimoabfold的新型模型,以根据预处理的ALM以及有效的进化器和结构模块来预测抗体序列的抗体结构。通过最大程度地减少CDR和帧对准点损耗的域特异性局灶性损失的集合损失,对PDB中抗体结构的端到端进行了训练。 Xtrimoabfold优于AlphaFold2和其他基于蛋白质语言模型的SOTA,例如Omemafold,HelixFold-Single和Igfold,具有较大的显着差距(RMSD上的30+%改善),而执行151倍的速度,而执行的速度比Alphafold2快151倍。据我们所知,Xtrimoabfold实现了最先进的抗体结构预测。它在准确性和效率方面的提高使其成为从头抗体设计的宝贵工具,并可以进一步改善免疫理论。

In the field of antibody engineering, an essential task is to design a novel antibody whose paratopes bind to a specific antigen with correct epitopes. Understanding antibody structure and its paratope can facilitate a mechanistic understanding of its function. Therefore, antibody structure prediction from its sequence alone has always been a highly valuable problem for de novo antibody design. AlphaFold2, a breakthrough in the field of structural biology, provides a solution to predict protein structure based on protein sequences and computationally expensive coevolutionary multiple sequence alignments (MSAs). However, the computational efficiency and undesirable prediction accuracy of antibodies, especially on the complementarity-determining regions (CDRs) of antibodies limit their applications in the industrially high-throughput drug design. To learn an informative representation of antibodies, we employed a deep antibody language model (ALM) on curated sequences from the observed antibody space database via a transformer model. We also developed a novel model named xTrimoABFold to predict antibody structure from antibody sequence based on the pretrained ALM as well as efficient evoformers and structural modules. The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss. xTrimoABFold outperforms AlphaFold2 and other protein language model based SOTAs, e.g., OmegaFold, HelixFold-Single, and IgFold with a large significant margin (30+\% improvement on RMSD) while performing 151 times faster than AlphaFold2. To the best of our knowledge, xTrimoABFold achieved state-of-the-art antibody structure prediction. Its improvement in both accuracy and efficiency makes it a valuable tool for de novo antibody design and could make further improvements in immuno-theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源