论文标题

数学专家和新手的高密度脑电图数据的非线性和机器学习分析

Nonlinear and Machine Learning Analyses on High-Density EEG data of Math Experts and Novices

论文作者

Poikonen, Hanna, Zaluska, Tomasz, Wang, Xiaying, Magno, Michele, Kapur, Manu

论文摘要

神经科学的当前趋势是使用自然主义刺激,例如电影院,课堂生物学或视频游戏,旨在在生态上有效的条件下了解大脑功能。自然主义的刺激招募复杂和重叠的认知,情感和感觉脑过程。大脑振荡形成了此类过程的基本机制,此外,这些过程可以通过专业知识来修改。尽管大脑作为生物系统是高度非线性的,但经常通过线性方法对人皮质振荡进行分析。这项研究应用了一种相对健壮的非线性方法,即Higuchi分形维度(HFD),将数学专家和新手的皮质振荡分类为在脑电图实验室中解决长期且复杂的数学演示时。大脑成像数据是在自然主义刺激期间长期跨度收集的,它可以应用数据驱动的分析。因此,我们还通过机器学习算法探讨了数学专业知识的神经标志。在分析自然主义数据时需要新颖的方法,因为基于还原主义和简化研究设计的现实世界中大脑功能的理论的表述既有挑战性又可疑。数据驱动的智能方法可能有助于开发和测试有关复杂大脑功能的新理论。我们的结果阐明了HFD在复杂数学期间对HFD分析的不同神经签名,并将机器学习作为一种有希望的数据驱动方法,以了解专业知识和数学认知的大脑过程。

Current trend in neurosciences is to use naturalistic stimuli, such as cinema, class-room biology or video gaming, aiming to understand the brain functions during ecologically valid conditions. Naturalistic stimuli recruit complex and overlapping cognitive, emotional and sensory brain processes. Brain oscillations form underlying mechanisms for such processes, and further, these processes can be modified by expertise. Human cortical oscillations are often analyzed with linear methods despite brain as a biological system is highly nonlinear. This study applies a relatively robust nonlinear method, Higuchi fractal dimension (HFD), to classify cortical oscillations of math experts and novices when they solve long and complex math demonstrations in an EEG laboratory. Brain imaging data, which is collected over a long time span during naturalistic stimuli, enables the application of data-driven analyses. Therefore, we also explore the neural signature of math expertise with machine learning algorithms. There is a need for novel methodologies in analyzing naturalistic data because formulation of theories of the brain functions in the real world based on reductionist and simplified study designs is both challenging and questionable. Data-driven intelligent approaches may be helpful in developing and testing new theories on complex brain functions. Our results clarify the different neural signature, analyzed by HFD, of math experts and novices during complex math and suggest machine learning as a promising data-driven approach to understand the brain processes in expertise and mathematical cognition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源