论文标题

纳米uavs上具有多机飞行时间传感器的板载低功率定位

Fully On-board Low-Power Localization with Multizone Time-of-Flight Sensors on Nano-UAVs

论文作者

Müller, Hanna, Zimmerman, Nicky, Polonelli, Tommaso, Magno, Michele, Behley, Jens, Stachniss, Cyrill, Benini, Luca

论文摘要

纳米大小的无人机(UAVS)具有在复杂环境(例如检查,监视或数据收集)中执行自动操作的巨大潜力。此外,它们的小尺寸允许在人类附近的安全操作和敏捷的飞行。自主飞行的一个重要部分是本地化,这是一项计算密集的任务,尤其是在通常在感应,处理和记忆方面具有强大限制的纳米uav上。这项工作介绍了一种实时本地化方法,具有用于资源约束的纳米uavs的低元素计数多量范围传感器。所提出的方法是基于一种新型的微型64型飞行时间传感器,从ST微电子和基于RISC-V的平行超低功率处理器,以实现准确和低延迟的蒙特卡洛在板载。使用纳米-UAV开放平台的实验评估表明,该提议的解决方案能够在312m $ \ boldsymbol {^2} $ MAP上定位,其精度为0.15亿,成功率高于95%。所达到的准确性足以在常见的室内环境中定位。我们分析了使用完整和半精确的浮点数以及量化的地图时分析权衡方案,并评估整个设计空间的准确性和内存足迹。实验评估表明,将8个RISC-V核的执行并行,使我们可以实时执行7倍的速度,并以0.2-30ms的延迟(取决于粒子的数量)实时执行算法,而总体无人机功率仅增加了3-7%。最后,我们提供了我们方法的开源实施。

Nano-size unmanned aerial vehicles (UAVs) hold enormous potential to perform autonomous operations in complex environments, such as inspection, monitoring or data collection. Moreover, their small size allows safe operation close to humans and agile flight. An important part of autonomous flight is localization, which is a computationally intensive task especially on a nano-UAV that usually has strong constraints in sensing, processing and memory. This work presents a real-time localization approach with low element-count multizone range sensors for resource-constrained nano-UAVs. The proposed approach is based on a novel miniature 64-zone time-of-flight sensor from ST Microelectronics and a RISC-V-based parallel ultra low-power processor, to enable accurate and low latency Monte Carlo Localization on-board. Experimental evaluation using a nano-UAV open platform demonstrated that the proposed solution is capable of localizing on a 31.2m$\boldsymbol{^2}$ map with 0.15m accuracy and an above 95% success rate. The achieved accuracy is sufficient for localization in common indoor environments. We analyze tradeoffs in using full and half-precision floating point numbers as well as a quantized map and evaluate the accuracy and memory footprint across the design space. Experimental evaluation shows that parallelizing the execution for 8 RISC-V cores brings a 7x speedup and allows us to execute the algorithm on-board in real-time with a latency of 0.2-30ms (depending on the number of particles), while only increasing the overall drone power consumption by 3-7%. Finally, we provide an open-source implementation of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源