论文标题

内核密度估计的核矩阵的亚季节算法

Sub-quadratic Algorithms for Kernel Matrices via Kernel Density Estimation

论文作者

Bakshi, Ainesh, Indyk, Piotr, Kacham, Praneeth, Silwal, Sandeep, Zhou, Samson

论文摘要

内核矩阵以及由它们代表的加权图是机器学习,统计和其他相关字段中无处不在的对象。使用内核方法(使用内核矩阵的学习和推理)的主要缺点是效率 - 给定$ n $输入点,大多数基于内核的算法都需要在执行任何后续计算之前实现整个$ n \ times n $ kernel矩阵,从而泡沫$ω(n^2)$ runtime。因此,解决各种问题的二次障碍已经成为广泛研究工作的主题。 We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles.我们建立在最近的内核密度估计框架的基础上,该框架(在$ n $中进行预处理后次数之后)可以返回内核矩阵的行/列总和的估计。 In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $ \ textit {sublinear} $(在分发的支持下)。我们的减少是我们每个应用程序中的主要成分,我们认为它们可能具有独立的利益。我们从经验上证明了我们的算法在低级别近似(LRA)和光谱稀疏方面的功效,在此我们观察到$ \ textbf {9x} $减少了LRA的核评估的数量,而LRA的基础线和$ \ \ fextbf {41x} $降低了图形尺寸的光谱尺寸。

Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $Ω(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源