论文标题

无序媒体中的量子状态。 I.低通滤波器方法

Quantum states in disordered media. I. Low-pass filter approach

论文作者

Gebhard, F., Nenashev, A. V., Meerholz, K., Baranovskii, S. D.

论文摘要

当前对无序半导体的研究活动的爆发要求开发适当的理论工具,这些工具揭示了电子状态在随机电位中的特征,同时避免了Schrödinger方程的耗时数值解决方案。到目前为止,在建议的各种方法中,Halperin和Lax(HL)的低通滤波器方法以及所谓的本地化景观技术(LLT)在社区中获得了最多的认可。我们证明,当应用于恒定质量的Schrödinger方程时,对于Lorentzian滤波器的特定情况,HL方法与LLT相当。有利地,低通滤波器方法可以超出洛伦兹形状的进一步优化。我们将全局HL滤波器作为最佳滤波器提出,仅具有单个长度比例,即局部波数据包的大小。作为应用程序,我们设计了优化的潜在景观,用于(半)经典计算强度局部状态的数量,这些状态忠实地重现精确的解决方案,以在一个维度中具有随机的白色噪声潜力。

The current burst in research activities on disordered semiconductors calls for the development of appropriate theoretical tools that reveal the features of electron states in random potentials while avoiding the time-consuming numerical solution of the Schrödinger equation. Among various approaches suggested so far, the low-pass filter approach of Halperin and Lax (HL) and the so-called localization landscape technique (LLT) have received most recognition in the community. We prove that the HL approach becomes equivalent to the LLT for the specific case of a Lorentzian filter when applied to the Schrödinger equation with a constant mass. Advantageously, the low-pass filter approach allows further optimization beyond the Lorentzian shape. We propose the global HL filter as optimal filter with only a single length scale, namely, the size of the localized wave packets. As an application, we design an optimized potential landscape for a (semi-)classical calculation of the number of strongly localized states that faithfully reproduce the exact solution for a random white-noise potential in one dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源