论文标题
在机器学习中的应用可能会近似莎普利公平
Probably Approximate Shapley Fairness with Applications in Machine Learning
论文作者
论文摘要
在机器学习(ML)的各种情况下,采用了沙普利价值(SV),包括数据评估,代理评估和功能归因,因为它满足了他们的公平要求。但是,由于确切的SV在实践中是不可行的,因此SV估计值近似。这个近似步骤提出了一个重要的问题:SV估计是否可以保留确切的SV的公平保证?我们观察到,确切的SV的公平保证对于SV估计过于限制。因此,我们将Shapley的公平性推广到可能近似Shapley的公平性,并提出富达评分,这是衡量SV估计变化的指标,这决定了公平保证的可能性。我们的最后一个理论贡献是一种新型的贪婪主动估计(GAE)算法,它将比事实上的蒙特卡罗估计值最大化最低的忠诚度得分并获得更好的公平保证。我们在经验上验证GAE在保证公平性方面优于几种现有方法,同时使用现实世界数据集在各种ML方案中保持竞争力。
The Shapley value (SV) is adopted in various scenarios in machine learning (ML), including data valuation, agent valuation, and feature attribution, as it satisfies their fairness requirements. However, as exact SVs are infeasible to compute in practice, SV estimates are approximated instead. This approximation step raises an important question: do the SV estimates preserve the fairness guarantees of exact SVs? We observe that the fairness guarantees of exact SVs are too restrictive for SV estimates. Thus, we generalise Shapley fairness to probably approximate Shapley fairness and propose fidelity score, a metric to measure the variation of SV estimates, that determines how probable the fairness guarantees hold. Our last theoretical contribution is a novel greedy active estimation (GAE) algorithm that will maximise the lowest fidelity score and achieve a better fairness guarantee than the de facto Monte-Carlo estimation. We empirically verify GAE outperforms several existing methods in guaranteeing fairness while remaining competitive in estimation accuracy in various ML scenarios using real-world datasets.