论文标题

在奇异随机复合物Ginzburg-landau方程的统计平衡上

On the inviscid limit of the singular stochastic complex Ginzburg-Landau equation at statistical equilibrium

论文作者

Zine, Younes

论文摘要

我们研究了使用Gibbs测量初始数据的二维奇异随机随机性非线性复合物Ginzburg-Landau的限制行为。我们表明,在适当的小粘度和小噪声状态下,限制动力学由吉布斯平衡处的确定性立方体非线性schrödinger方程给出。为了获得这种融合,我们的方法将热量和Schrödinger分析结合在Bourgain傅立叶限制规范方法的框架内(1993)。

We study the limiting behavior of the two-dimensional singular stochastic stochastic cubic nonlinear complex Ginzburg-Landau with Gibbs measure initial data. We show that in the appropriate small viscosity and small noise regimes, the limiting dynamics is given by the deterministic cubic nonlinear Schrödinger equation at Gibbs equilibrium. In order to obtain this convergence, our approach combines both heat and Schrödinger analysis, within the framework of the Fourier restriction norm method of Bourgain (1993).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源