论文标题

多评价棱镜:从多个评估者学习自我校准的医学图像分割

Multi-rater Prism: Learning self-calibrated medical image segmentation from multiple raters

论文作者

Wu, Junde, Fang, Huihui, Yang, Yehui, Liu, Yuanpei, Gao, Jing, Duan, Lixin, Yang, Weihua, Xu, Yanwu

论文摘要

在医学图像细分中,通常有必要从多位专家那里收集意见来做出最终决定。这种临床常规有助于减轻单个偏见。但是,当数据乘以注释时,标准深度学习模型通常不适用。在本文中,我们提出了一个新型的神经网络框架,称为多评价者棱镜(MRPRISM),以从多个标签中学习医学图像分割。受到迭代半季度优化的启发,拟议的MRPRISM将以经常性的方式将多评价者的认知分配任务和校准分段任务结合起来。在此复发过程中,MRPRISM可以考虑到图像语义属性的观察间变异性,最后收集到反映了观察者间一致性的自校准的分割结果。具体而言,我们建议融合的棱镜(Conp)和分歧棱镜(DIVP)迭代处理这两个任务。 Conp根据DIVP估计的多评价置信度图来学习校准的分割。 DIVP基于由Conp估计的分割掩模生成多评价置信图。实验结果表明,通过经常运行局限和DIVP,这两个任务可以实现相互改进。 MRPRISM的最终融合分段结果在广泛的医学图像分割任务上优于最先进的策略(SOTA)。

In medical image segmentation, it is often necessary to collect opinions from multiple experts to make the final decision. This clinical routine helps to mitigate individual bias. But when data is multiply annotated, standard deep learning models are often not applicable. In this paper, we propose a novel neural network framework, called Multi-Rater Prism (MrPrism) to learn the medical image segmentation from multiple labels. Inspired by the iterative half-quadratic optimization, the proposed MrPrism will combine the multi-rater confidences assignment task and calibrated segmentation task in a recurrent manner. In this recurrent process, MrPrism can learn inter-observer variability taking into account the image semantic properties, and finally converges to a self-calibrated segmentation result reflecting the inter-observer agreement. Specifically, we propose Converging Prism (ConP) and Diverging Prism (DivP) to process the two tasks iteratively. ConP learns calibrated segmentation based on the multi-rater confidence maps estimated by DivP. DivP generates multi-rater confidence maps based on the segmentation masks estimated by ConP. The experimental results show that by recurrently running ConP and DivP, the two tasks can achieve mutual improvement. The final converged segmentation result of MrPrism outperforms state-of-the-art (SOTA) strategies on a wide range of medical image segmentation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源