论文标题
基于测量的应用
The Min-Entropy of Classical-Quantum Combs for Measurement-Based Applications
论文作者
论文摘要
学习量子系统的隐藏特性通常需要一系列交互。在这项工作中,我们使用经典量词状态的概括(称为经典量子梳子)对此类多创学习过程进行形式化。在这里,“经典”是指编码要学习的隐藏属性的随机变量,“量子”是指描述系统行为的量子梳子。可以通过将梳子最小透镜(Chiribella and Ebler,NJP,2016)应用于经典的量子梳子来量化隐藏特性的最佳策略。为了证明这种方法的力量,我们将注意力集中在基于测量的量子计算(MBQC)和相关应用程序中得出的一系列问题。具体来说,我们使用梳子形式主义描述了已知的盲量计算(BQC)协议,从而利用最小的entropy为该协议的多回合提供了单次安全性证明,从而扩展了文献中现有的结果。此外,我们考虑了与部分未知MBQC设备验证有关的一系列具有操作动机的示例。这些示例涉及学习正确使用所需的设备的功能,包括学习其内部参考框架以进行测量校准。我们还介绍了在这种情况下出现的MBQC和量子因果模型之间的新型联系。
Learning a hidden property of a quantum system typically requires a series of interactions. In this work, we formalise such multi-round learning processes using a generalisation of classical-quantum states, called classical-quantum combs. Here, "classical" refers to a random variable encoding the hidden property to be learnt, and "quantum" refers to the quantum comb describing the behaviour of the system. The optimal strategy for learning the hidden property can be quantified by applying the comb min-entropy (Chiribella and Ebler, NJP, 2016) to classical-quantum combs. To demonstrate the power of this approach, we focus attention on an array of problems derived from measurement-based quantum computation (MBQC) and related applications. Specifically, we describe a known blind quantum computation (BQC) protocol using the combs formalism and thereby leverage the min-entropy to provide a proof of single-shot security for multiple rounds of the protocol, extending the existing result in the literature. Furthermore, we consider a range of operationally motivated examples related to the verification of a partially unknown MBQC device. These examples involve learning the features of the device necessary for its correct use, including learning its internal reference frame for measurement calibration. We also introduce a novel connection between MBQC and quantum causal models that arises in this context.