论文标题
通过多尺度运动一致性学习,人群级异常的行为检测
Crowd-level Abnormal Behavior Detection via Multi-scale Motion Consistency Learning
论文作者
论文摘要
检测来自个人复杂相互作用的异常人群运动至关重要,以确保人群的安全。人群级异常行为(出租车),例如反流和人群湍流,被证明是许多人群灾难的关键原因。在最近的十年中,视频异常检测(VAD)技术在检测个人级别的异常行为方面取得了显着成功(例如,突然跑步,战斗和偷窃),但是对CABS的VAD进行研究是相当有限的。与个体级别的异常不同,当局部观察到的驾驶室通常与正常行为显着差异,而驾驶室的尺度可能会因一种情况而异。在本文中,我们提出了一项系统的研究,以解决具有新颖的人群运动学习框架,多规模运动一致性网络(MSMC-NET)的CAB的重要问题。 MSMC-NET首先捕获图表表示中的空间和时间人群运动一致性信息。然后,它同时训练以不同尺度构建的多个特征图,以捕获丰富的人群模式。注意网络用于自适应融合多尺度功能,以获得更好的驾驶室检测。在实证研究中,我们考虑了三个大规模的人群活动数据集,即Umn,朝j和Love Parade。实验结果表明,MSMC-NET可以大大改善所有数据集的最新性能。
Detecting abnormal crowd motion emerging from complex interactions of individuals is paramount to ensure the safety of crowds. Crowd-level abnormal behaviors (CABs), e.g., counter flow and crowd turbulence, are proven to be the crucial causes of many crowd disasters. In the recent decade, video anomaly detection (VAD) techniques have achieved remarkable success in detecting individual-level abnormal behaviors (e.g., sudden running, fighting and stealing), but research on VAD for CABs is rather limited. Unlike individual-level anomaly, CABs usually do not exhibit salient difference from the normal behaviors when observed locally, and the scale of CABs could vary from one scenario to another. In this paper, we present a systematic study to tackle the important problem of VAD for CABs with a novel crowd motion learning framework, multi-scale motion consistency network (MSMC-Net). MSMC-Net first captures the spatial and temporal crowd motion consistency information in a graph representation. Then, it simultaneously trains multiple feature graphs constructed at different scales to capture rich crowd patterns. An attention network is used to adaptively fuse the multi-scale features for better CAB detection. For the empirical study, we consider three large-scale crowd event datasets, UMN, Hajj and Love Parade. Experimental results show that MSMC-Net could substantially improve the state-of-the-art performance on all the datasets.