论文标题
多体Lindbladians的对称分类:十倍之外
Symmetry Classification of Many-Body Lindbladians: Tenfold Way and Beyond
论文作者
论文摘要
我们对多体Lindblad超级操作器进行了系统的对称分类,描述了一般(交互)开放量子系统,该系统耦合到马尔可夫环境。我们的分类基于反对对称性和单一互动的多体林金族人的行为。我们发现,墓穴保存减少了对称类别的数量,而痕量保存和完全阳性并非如此,并且可接受的类别的集合取决于存在其他单一的对称性:在其缺失或包含稳定状态的对称性部门中,许多体制的Lindbladians属于十个非甲状化类中的一项,属于十个非甲状化类对称性类别中的一个;但是,如果还有其他对称性,我们考虑非稳态的部门,它们属于不同的19个类别。在这两种情况下,它都不包括Kramer堕落的课程。值得注意的是,我们的分类承认对非马克维亚人,甚至是非踪迹的开放量子动力学的情况。尽管抽象分类是完全一般的,但我们然后将其应用于一般(远程,交互,空间不均匀)旋转$ 1/2 $链条。我们在稳态领域的所有十个类别的Lindbladians中明确构建了例子,描述了标准的物理过程,例如去序列,旋转注射和吸收以及跳跃的跳跃,从而说明了我们分类与实践物理应用的相关性。最后,我们表明每个类中的示例都显示唯一的随机矩阵相关性。为了充分解决所有对称性,我们采用了散装复合间距比的组合分析以及与对称操作相关的特征向量对的重叠。我们进一步发现,由于Lindbladian PT对称性的自发断裂,限制在真实和虚轴上或接近原点的水平的统计数据并非普遍。
We perform a systematic symmetry classification of many-body Lindblad superoperators describing general (interacting) open quantum systems coupled to a Markovian environment. Our classification is based on the behavior of the many-body Lindbladian under antiunitary symmetries and unitary involutions. We find that Hermiticity preservation reduces the number of symmetry classes, while trace preservation and complete positivity do not, and that the set of admissible classes depends on the presence of additional unitary symmetries: in their absence or in symmetry sectors containing steady states, many-body Lindbladians belong to one of ten non-Hermitian symmetry classes; if however, there are additional symmetries and we consider non-steady-state sectors, they belong to a different set of 19 classes. In both cases, it does not include classes with Kramer's degeneracy. Remarkably, our classification admits a straightforward generalization to the case of non-Markovian, and even non-trace-preserving, open quantum dynamics. While the abstract classification is completely general, we then apply it to general (long-range, interacting, spatially inhomogeneous) spin-$1/2$ chains. We explicitly build examples in all ten classes of Lindbladians in steady-state sectors, describing standard physical processes such as dephasing, spin injection and absorption, and incoherent hopping, thus illustrating the relevance of our classification for practical physics applications. Finally, we show that the examples in each class display unique random-matrix correlations. To fully resolve all symmetries, we employ the combined analysis of bulk complex spacing ratios and the overlap of eigenvector pairs related by symmetry operations. We further find that statistics of levels constrained onto the real and imaginary axes or close to the origin are not universal due to spontaneous breaking of Lindbladian PT symmetry.