论文标题

$ 2 $维代数的保守代数,iv

Conservative algebras of $2$-dimensional algebras, IV

论文作者

Ouaridi, Amir Fernández, Kaygorodov, Ivan, González, Cándido Martín

论文摘要

保守派代数的概念出现在坎托(Kantor)于1972年的一篇论文中。后来,他在$ n $ dimensional vector Space上定义了所有代数(即双线图)的保守代数$ w(n)$。如果$ n> 1 $,则代数$ w(n)$不属于任何众所周知的代数类(例如联想,Lie,Jordan或Leibniz代数)。保守代数理论中的$ w(n)$看起来与$ \ mathfrak {gl} _n $在Lie代数理论中的作用相似。也就是说,可以从\ mathbb {n}的某些$ n \ in \ mathbb {n}中的普遍代数$ w(n)$中获得任意保守的代数。

The notion of conservative algebras appeared in a paper by Kantor in 1972. Later, he defined the conservative algebra $W(n)$ of all algebras (i.e. bilinear maps) on the $n$-dimensional vector space. If $n>1$, then the algebra $W(n)$ does not belong to any well-known class of algebras (such as associative, Lie, Jordan, or Leibniz algebras). It looks like $W(n)$ in the theory of conservative algebras plays a similar role to the role of $\mathfrak{gl}_n$ in the theory of Lie algebras. Namely, an arbitrary conservative algebra can be obtained from a universal algebra $W(n)$ for some $n \in \mathbb{N}.$ The present paper is a part of a series of papers, dedicated to the study of the algebra $W(2)$ and its principal subalgebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源