论文标题

使用执行器线模型在偏航未对准控制下两个串联风力涡轮机的空气动力学表征

Aerodynamic characterization of two tandem wind turbines under yaw misalignment control using actuator line model

论文作者

Tu, Yu, Zhang, Kai, Han, Zhaolong, Zhou, Dai, Bilgen, Onur

论文摘要

事实证明,偏航控制能够减轻困扰风电场效率的唤醒作用。在这项工作中,采用了执行器线建模(ALM)方法来模拟距离$ 3-7 $转子直径的两个串联涡轮机上的流量,上游转子的偏航角从$γ_1= 0^{\ circ} $ fo to $γ_1= 0^{\ circ} $ to $ 50^{\ circ} $。目的是提供一个在偏航未对准下的简单风电场的全面空气动力学表征。随着偏航角的增加,下游转子产生的功率增加,补偿上游转子中的功率损失,并导致两个涡轮机的总功率高于没有偏航控制的涡轮机。当偏航转子的上游唤醒从下游转子平面重定向时,达到了最大功率输出。在下游转子的后面,观察到次级转向现象,在中心线也重定向。执行器线模型的使用还揭示了不稳定的空气动力学特性,而低保真模型无法捕获。对于上游转子,偏航的未对准会导致刀片上局部攻击角度变化,从而导致不稳定的负载。下游转子部分被部分浸入由偏航上游转子产生的偏转尾流中。随着叶片的流入和出发,叶片会经历循环载荷,导致空气动力载荷的波动比上游转子更强。这些分析从空气动力学性能,唤醒曲线和不稳定特征的角度从对两个串联转子的偏航控制效果提供了全面的理解。从研究中获得的见解可以帮助设计风电场的集体偏航控制策略,并为评估与偏航未对准有关的疲劳损害奠定了基础。

Yaw control has proven to be promising in alleviating the wake effects that plague the efficiency of wind farms. In this work, the actuator line modeling (ALM) method is adopted to simulate the flows over two tandem turbines distanced by $3 - 7$ rotor diameters, with the yaw angle of the upstream rotor varying from $γ_1=0^{\circ}$ to $50^{\circ}$. The aim is to provide a comprehensive aerodynamic characterization of a simple wind farm under yaw misalignment. With increasing yaw angle, the power generated by the downstream rotor increases, compensating the power loss in the upstream rotor, and resulting in higher total power of the two turbines than that without yaw control. The maximum power output is achieved as the upstream wake of the yawed rotor is redirected away from the downstream rotor plane. Behind the downstream rotor, the secondary steering phenomenon is observed, where the wake is also redirected from the centerline. The use of the actuator line model also reveal unsteady aerodynamic characteristics that can not be captured by lower-fidelity models. For the upstream rotor, the yaw misalignment results in time-varying change in the local angle of attack on the blade, giving rise to unsteady loading. The downstream rotor is partially submerged in the deflected wake incurred by the yawed upstream rotor. As the blade revolves into and out of the wake deficit, the blade experiences cyclic loading, leading to even stronger fluctuations in the aerodynamic loads than the upstream rotor. These analysis provides a comprehensive understanding of the yaw control effects on the two tandem rotors from the perspectives of aerodynamic performance, wake profiles, and unsteady characteristics. The insights gained from the study can aid the design of collective yaw control strategies of wind farms, and lay the foundation for assessing the fatigue damage associated with yaw misalignment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源