论文标题

通过Lovász局部引理来学习Markov随机字段,用于组合结构

Learning Markov Random Fields for Combinatorial Structures via Sampling through Lovász Local Lemma

论文作者

Jiang, Nan, Gu, Yi, Xue, Yexiang

论文摘要

学会生成满足约束的复杂组合结构将对许多应用领域产生变革性的影响。但是,由于嵌入式概率推断的高度棘手的性质,它超出了现有方法的能力。先前的工作将大部分培训时间都花在学习中,以将有效的结构与无效的结构分开,但没有学习有效结构的归纳偏见。我们开发了神经LovászSampler(Nelson),该采样器通过Lovász局部引理(LLL)嵌入了采样器,作为完全可分离的神经网络层。我们的Nelson-CD将此采样器嵌入了马尔可夫随机场的对比度差异学习过程中。尼尔森允许我们从当前模型分布中获得有效的样本。然后,将对比性差异用于将这些样本与训练集中的样本分开。纳尔逊(Nelson)被用作完全可区分的神经网,利用GPU的并行性。几个现实世界中的实验结果表明,尼尔森学会了生成100 \%的有效结构,而基线可以超时或无法确保有效性。尼尔森还表现出在运行时间,日志样品和地图分数中的其他方法。

Learning to generate complex combinatorial structures satisfying constraints will have transformative impacts in many application domains. However, it is beyond the capabilities of existing approaches due to the highly intractable nature of the embedded probabilistic inference. Prior works spend most of the training time learning to separate valid from invalid structures but do not learn the inductive biases of valid structures. We develop NEural Lovász Sampler (Nelson), which embeds the sampler through Lovász Local Lemma (LLL) as a fully differentiable neural network layer. Our Nelson-CD embeds this sampler into the contrastive divergence learning process of Markov random fields. Nelson allows us to obtain valid samples from the current model distribution. Contrastive divergence is then applied to separate these samples from those in the training set. Nelson is implemented as a fully differentiable neural net, taking advantage of the parallelism of GPUs. Experimental results on several real-world domains reveal that Nelson learns to generate 100\% valid structures, while baselines either time out or cannot ensure validity. Nelson also outperforms other approaches in running time, log-likelihood, and MAP scores.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源