论文标题

使用图形卷积网络对工程图的组件分割

Component Segmentation of Engineering Drawings Using Graph Convolutional Networks

论文作者

Zhang, Wentai, Joseph, Joe, Yin, Yue, Xie, Liuyue, Furuhata, Tomotake, Yamakawa, Soji, Shimada, Kenji, Kara, Levent Burak

论文摘要

我们提出一个数据驱动的框架,以自动化2D工程部分图纸的矢量化和机器解释。在工业环境中,大多数制造工程师仍然依靠手动阅读来确定设计师提交的图纸的拓扑和制造要求。解释过程是费力且耗时的,严重抑制了零件报价和制造任务的效率。尽管基于图像的计算机视觉方法的最新进展表现出了通过语义分割方法解释自然图像的巨大潜力,但这种方法在解析工程技术图纸中的应用中应用于语义准确的组件仍然是一个重大挑战。工程图中的严重像素稀疏性还限制了基于图像的数据驱动方法的有效特征。为了克服这些挑战,我们提出了一个基于深度学习的框架,该框架可以预测每个矢量成分的语义类型。以栅格图像为输入,我们通过变薄,中风跟踪和立方bezier拟合来矢量化所有组件。然后,基于组件之间的连接生成此类组件的图。最后,在此图数据上训练了图形卷积神经网络,以识别每个组件的语义类型。我们在工程图中文本,维度和轮廓组件的语义分割的上下文中测试我们的框架。结果表明,与最近的图像和基于图的分割方法相比,我们的方法可以产生最佳性能。

We present a data-driven framework to automate the vectorization and machine interpretation of 2D engineering part drawings. In industrial settings, most manufacturing engineers still rely on manual reads to identify the topological and manufacturing requirements from drawings submitted by designers. The interpretation process is laborious and time-consuming, which severely inhibits the efficiency of part quotation and manufacturing tasks. While recent advances in image-based computer vision methods have demonstrated great potential in interpreting natural images through semantic segmentation approaches, the application of such methods in parsing engineering technical drawings into semantically accurate components remains a significant challenge. The severe pixel sparsity in engineering drawings also restricts the effective featurization of image-based data-driven methods. To overcome these challenges, we propose a deep learning based framework that predicts the semantic type of each vectorized component. Taking a raster image as input, we vectorize all components through thinning, stroke tracing, and cubic bezier fitting. Then a graph of such components is generated based on the connectivity between the components. Finally, a graph convolutional neural network is trained on this graph data to identify the semantic type of each component. We test our framework in the context of semantic segmentation of text, dimension and, contour components in engineering drawings. Results show that our method yields the best performance compared to recent image, and graph-based segmentation methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源