论文标题

高斯进程屏障状态,用于安全轨迹优化和控制

Gaussian Process Barrier States for Safe Trajectory Optimization and Control

论文作者

Almubarak, Hassan, Gandhi, Manan, Aoyama, Yuichiro, Sadegh, Nader, Theodorou, Evangelos A.

论文摘要

本文提出了嵌入式高斯过程屏障状态(GP-BAS),这是一种使用贝叶斯学习安全控制非线性系统的未建模动力学的方法。高斯工艺(GPS)用于模拟安全关键系统的动力学,后来在GP-BAS模型中使用。我们利用GP后验来得出屏障状态动力学,该动力学用于构建安全嵌入的高斯工艺动力学模型(GPDM)。我们表明,只要我们可以设计一个构成BAS-GPDM的轨迹(或渐近稳定)的控制器,就可以控制安全系统以保持安全区域。由于弃权,诸如系统的线性性相对于控制,约束的相对程度以及约束的相对程度,约束的相对程度,约束的相对程度以及约束的相对程度,提出的方法在早期尝试将GP与障碍函数结合起来的早期尝试中克服了各种限制。这项工作是针对轨迹优化和控制的各种示例实施的,包括对不稳定的线性系统的最佳稳定以及通过障碍物路线导航的Dubins车辆的安全轨迹优化,并使用GP区分可区分的动态编程(GP DDP)在障碍物避免任务中避免了四型。所提出的框架能够维持对未建模动力学的安全优化和控制,并且纯粹是数据驱动的。

This paper proposes embedded Gaussian Process Barrier States (GP-BaS), a methodology to safely control unmodeled dynamics of nonlinear system using Bayesian learning. Gaussian Processes (GPs) are used to model the dynamics of the safety-critical system, which is subsequently used in the GP-BaS model. We derive the barrier state dynamics utilizing the GP posterior, which is used to construct a safety embedded Gaussian process dynamical model (GPDM). We show that the safety-critical system can be controlled to remain inside the safe region as long as we can design a controller that renders the BaS-GPDM's trajectories bounded (or asymptotically stable). The proposed approach overcomes various limitations in early attempts at combining GPs with barrier functions due to the abstention of restrictive assumptions such as linearity of the system with respect to control, relative degree of the constraints and number or nature of constraints. This work is implemented on various examples for trajectory optimization and control including optimal stabilization of unstable linear system and safe trajectory optimization of a Dubins vehicle navigating through an obstacle course and on a quadrotor in an obstacle avoidance task using GP differentiable dynamic programming (GP-DDP). The proposed framework is capable of maintaining safe optimization and control of unmodeled dynamics and is purely data driven.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源