论文标题

任务发现:查找神经网络概括的任务

Task Discovery: Finding the Tasks that Neural Networks Generalize on

论文作者

Atanov, Andrei, Filatov, Andrei, Yeo, Teresa, Sohmshetty, Ajay, Zamir, Amir

论文摘要

在开发深度学习模型时,我们通常会确定要解决的任务,然后搜索一个在任务上很好的模型。一个有趣的问题是:如果我们在模型空间中修复任务和搜索,我们会在任务空间中修复模型并搜索,该怎么办?我们可以找到模型概括的任务吗?它们看起来如何,或者表明什么?这些是我们在本文中解决的问题。 我们提出了一个任务发现框架,该框架通过优化基于泛化的数量称为协议得分来自动找到此类任务的示例。我们证明,一组图像可以引起许多神经网络良好概括的任务。这些任务反映了学习框架的归纳偏差以及数据中存在的统计模式,因此它们可以为分析神经网络及其偏见做有用的工具。例如,我们表明发现的任务可用于自动创建对抗性火车测试拆分,从而使模型在测试时间失败,而无需更改像素或标签,但仅选择应如何在火车和测试集之间分配数据点。我们以有关发现任务的人类解剖性的讨论结尾。

When developing deep learning models, we usually decide what task we want to solve then search for a model that generalizes well on the task. An intriguing question would be: what if, instead of fixing the task and searching in the model space, we fix the model and search in the task space? Can we find tasks that the model generalizes on? How do they look, or do they indicate anything? These are the questions we address in this paper. We propose a task discovery framework that automatically finds examples of such tasks via optimizing a generalization-based quantity called agreement score. We demonstrate that one set of images can give rise to many tasks on which neural networks generalize well. These tasks are a reflection of the inductive biases of the learning framework and the statistical patterns present in the data, thus they can make a useful tool for analysing the neural networks and their biases. As an example, we show that the discovered tasks can be used to automatically create adversarial train-test splits which make a model fail at test time, without changing the pixels or labels, but by only selecting how the datapoints should be split between the train and test sets. We end with a discussion on human-interpretability of the discovered tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源