论文标题

通过混合数据增强和深度度量学习,很少发射特定的发射器识别

Few-Shot Specific Emitter Identification via Hybrid Data Augmentation and Deep Metric Learning

论文作者

Wang, Cheng, Fu, Xue, Wang, Yu, Gui, Guan, Gacanin, Haris, Sari, Hikmet, Adachi, Fumiyuki

论文摘要

特定的发射极标识(SEI)是一种潜在的物理层认证技术,它是上层身份验证的最关键补充之一。射频指纹(RFF)的SEI是通过不可变的RF特性与电子组件将一个发射极区分开的。由于深度学习(DL)提取隐藏特征并执行分类的强大能力,因此可以从大量信号样本中提取高度分离的特征,从而启用SEI。考虑到有限的培训样本的状况,我们提出了一种基于混合数据增强和深度度量学习(HDA-DML)的新颖的几声SEI(FS-SEI)方法,该方法摆脱了对辅助数据集的依赖性。具体而言,旋转和cutmix组成的HDA旨在增加数据多样性,而DML用于提取高歧视性语义特征。提出的基于HDA-DML的FS-SEI方法是在开源大规模现实世界中的自动依赖性监视播放(ADS-B)数据集和现实世界WiFi数据集上评估的。两个数据集的仿真结果表明,与五种最新的FS-SEI方法相比,所提出的方法可实现更好的识别性能和更高的特征可区分性。

Specific emitter identification (SEI) is a potential physical layer authentication technology, which is one of the most critical complements of upper layer authentication. Radio frequency fingerprint (RFF)-based SEI is to distinguish one emitter from each other by immutable RF characteristics from electronic components. Due to the powerful ability of deep learning (DL) to extract hidden features and perform classification, it can extract highly separative features from massive signal samples, thus enabling SEI. Considering the condition of limited training samples, we propose a novel few-shot SEI (FS-SEI) method based on hybrid data augmentation and deep metric learning (HDA-DML) which gets rid of the dependence on auxiliary datasets. Specifically, HDA consisting rotation and CutMix is designed to increase data diversity, and DML is used to extract high discriminative semantic features. The proposed HDA-DML-based FS-SEI method is evaluated on an open source large-scale real-world automatic-dependent surveillance-broadcast (ADS-B) dataset and a real-world WiFi dataset. The simulation results of two datasets show that the proposed method achieves better identification performance and higher feature discriminability than five latest FS-SEI methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源