论文标题

金属性手性磁铁中的非偏腹声子传播

Nonreciprocal Phonon Propagation in a Metallic Chiral Magnet

论文作者

Nomura, T., Zhang, X. -X., Takagi, R., Karube, K., Kikkawa, A., Taguchi, Y., Tokura, Y., Zherlitsyn, S., Kohama, Y., Seki, S.

论文摘要

磁子磁管效应(MCHE)是由镜子和时间反向对称性的同时断裂引起的声子的非倒数声和热传输。到目前为止,只有在铁磁绝缘子Cu2oseo3中观察到声子MCHE,其中非授予响应消失在58 K的居里温度之上。出乎意料的是,该金属化合物中的非转换性在较高的温度下得到增强,并观察到高达250K。绝缘Cu2OseO3和金属CO9ZN9MN2之间的这种明显对比度表明,金属磁体具有机械性,可以增强在较高温度下非核心的机械性。从超声和微波谱检验实验中,我们得出结论,CO9ZN9MN2的声子MCHE的大小主要取决于镁带宽,这在低温下增加并阻碍了磁蛋白 - Phonon杂种杂交。我们的结果表明,通过工程化材料带,可以进一步增强声子非股骨能力。

The phonon magnetochiral effect (MChE) is the nonreciprocal acoustic and thermal transports of phonons caused by the simultaneous breaking of the mirror and time-reversal symmetries. So far, the phonon MChE has been observed only in a ferrimagnetic insulator Cu2OSeO3, where the nonreciprocal response disappears above the Curie temperature of 58 K. Here, we study the nonreciprocal acoustic properties of a room-temperature ferromagnet Co9Zn9Mn2 for unveiling the phonon MChE close to the room temperature. Surprisingly, the nonreciprocity in this metallic compound is enhanced at higher temperatures and observed up to 250 K. This clear contrast between insulating Cu2OSeO3 and metallic Co9Zn9Mn2 suggests that metallic magnets have a mechanism to enhance the nonreciprocity at higher temperatures. From the ultrasound and microwave-spectroscopy experiments, we conclude that the magnitude of the phonon MChE of Co9Zn9Mn2 mostly depends on the magnon bandwidth, which increases at low temperatures and hinders the magnon-phonon hybridization. Our results suggest that the phonon nonreciprocity could be further enhanced by engineering the magnon band of materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源