论文标题

使用基于距离的特征对GPS轨迹数据进行聚类和分析

Clustering and Analysis of GPS Trajectory Data using Distance-based Features

论文作者

Koh, Zann, Zhou, Yuren, Lau, Billy Pik Lik, Liu, Ran, Chong, Keng Hua, Yuen, Chau

论文摘要

智能手机的扩散通过很大程度上增加了可用的移动性数据的类型和数量来加速移动性研究。这种流动性数据的一种来源来自GPS技术,该技术变得越来越普遍,并帮助研究社区了解人们的出行模式。但是,缺少标准化的框架来研究在工作日和使用机器学习方法的工作日和非工作日的非工作,非居家位置创建的不同的移动性模式。我们提出了一个新的移动性指标,每日特征距离,并使用它来为每个用户以及原始用途矩阵功能生成功能。然后,我们将这些功能与无监督的机器学习方法,$ k $ -Means聚类一起使用,并为每种类型的一天(工作日和淡日)获取三个用户。最后,我们提出了两个新的指标,用于分析聚类结果,即用户共同点和平均频率。通过使用所提出的指标,可以辨别有趣的用户行为,并帮助我们更好地了解用户的移动性模式。

The proliferation of smartphones has accelerated mobility studies by largely increasing the type and volume of mobility data available. One such source of mobility data is from GPS technology, which is becoming increasingly common and helps the research community understand mobility patterns of people. However, there lacks a standardized framework for studying the different mobility patterns created by the non-Work, non-Home locations of Working and Nonworking users on Workdays and Offdays using machine learning methods. We propose a new mobility metric, Daily Characteristic Distance, and use it to generate features for each user together with Origin-Destination matrix features. We then use those features with an unsupervised machine learning method, $k$-means clustering, and obtain three clusters of users for each type of day (Workday and Offday). Finally, we propose two new metrics for the analysis of the clustering results, namely User Commonality and Average Frequency. By using the proposed metrics, interesting user behaviors can be discerned and it helps us to better understand the mobility patterns of the users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源