论文标题
高阶水波模型的独特延续和时间衰减
Unique continuation and time decay for a higher-order water wave model
论文作者
论文摘要
这项工作专门证明了高阶Korteweg -de Vries(KDV)解决方案的能量的指数衰减 - 本杰明·巴诺·马动尼(BBM)方程在具有局部阻尼机制的周期域上。遵循[11]中的方法,结合了能量估计,乘数和紧凑性参数,该问题被减少以证明模型弱解决方案的唯一连续性(UCP)。然后,这是通过得出Carleman估计的耦合椭圆形纤维方程系统来完成的。
This work is devoted to prove the exponential decay for the energy of solutions of a higher order Korteweg -de Vries (KdV)--Benjamin-Bona-Mahony (BBM) equation on a periodic domain with a localized damping mechanism. Following the method in [11], which combines energy estimates, multipliers and compactness arguments, the problem is reduced to prove the Unique Continuation Property (UCP) for weak solutions of the model. Then, this is done by deriving Carleman estimates for a system of coupled elliptic-hyperbolic equations.