论文标题
用于流信息的结构定理
A structure theorem for streamed information
论文作者
论文摘要
我们确定了Schützenberger(1958)的自由半混音代数,并在路径上具有实数功能的代数,其中半散装模仿了功能对另一个功能的整合。然后,据我们所知,我们提供了两个涉及其换向因子(区域)的新身份,并表明这些身份足以恢复Dzhumadil'daev(2007)的Zinbiel和Tortkara身份。我们使用这些身份来证明,自由半混音代数的任何元素都可以在迭代区域表示为多项式。此外,我们考虑了通过在大厅树上的半混音递归应用来定义的最小迭代积分集。利用这组大厅积分与自由谎言代数的古典大厅基础之间的双重性,我们证明使用组合论证可以表明,自由半散装代数的任何元素都可以独特地写成大厅积分的多项式。我们将此结果解释为流式信息的结构定理,与整数的独特质量分解相似,允许将流式数据上的任何实际有价值的功能分为两个部分:第一个将流的信息提取并包装为递归定义的原子对象(Hall积分)(HALL积分),并评估这些对象中的多项函数,而无需进一步参考这些对象。是否将类似结果的问题保留在Hall区域是否被Hall区域代替的问题中是一个开放猜想。最后,我们在原始字母的最伟大字母中构建了一个规范,但据我们所知,自由半混音代数的新分解是Shuffle Power系列,该字母在由新字母内免费产生的子代数中的系数带有系数,并带有无限的字母。我们使用该结构为我们的结构定理提供了第二个证明。
We identify the free half shuffle algebra of Schützenberger (1958) with an algebra of real-valued functionals on paths, where the half shuffle emulates integration of a functional against another. We then provide two, to our knowledge, new identities in arity 3 involving its commutator (area), and show that these are sufficient to recover the Zinbiel and Tortkara identities of Dzhumadil'daev (2007). We use these identities to prove that any element of the free half shuffle algebra can be expressed as a polynomial over iterated areas. Moreover, we consider minimal sets of iterated integrals defined through the recursive application of the half shuffle on Hall trees. Leveraging the duality between this set of Hall integrals and classical Hall bases of the free Lie algebra, we prove using combinatorial arguments that any element of the free half shuffle algebra can be written uniquely as a polynomial over Hall integrals. We interpret this result as a structure theorem for streamed information, loosely analogous to the unique prime factorisation of integers, allowing to split any real valued function on streamed data into two parts: a first that extracts and packages the streamed information into recursively defined atomic objects (Hall integrals), and a second that evaluates a polynomial function in these objects without further reference to the original stream. The question of whether a similar result holds if Hall integrals are replaced by Hall areas is left as an open conjecture. Finally, we construct a canonical, but to our knowledge, new decomposition of the free half shuffle algebra as shuffle power series in the greatest letter of the original alphabet with coefficients in a sub-algebra freely generated by a new alphabet with an infinite number of letters. We use this construction to provide a second proof of our structure theorem.