论文标题
在多代理系统中实现真正的无损稀疏沟通
Towards True Lossless Sparse Communication in Multi-Agent Systems
论文作者
论文摘要
沟通使代理商能够合作实现目标。学习何时沟通,即稀疏(及时)通信,以及在带宽有限时向谁传达的信息。但是,学习稀疏个性化沟通方面的最新工作在培训过程中遭受了较大的差异,在培训中,沟通的下降是以减少奖励的成本,尤其是在合作任务中。我们使用信息瓶颈将稀疏性重新定义为表示学习问题,我们表明,与先前的艺术相比,我们自然可以在较低的预算下实现无损的稀疏沟通。在本文中,我们提出了一种通过信息最大化封闭式稀疏多代理通信(IMGS-MAC)来实现真正无损稀疏性的方法。我们的模型使用两个个性化的正规化目标,一个信息最大化自动编码器和稀疏的通信损失,以创造信息丰富且稀疏的通信。我们通过直接的因果关系分析非SPARSE运行中的消息来评估学习通信的“语言”,以确定无损稀疏预算的范围,这些预算允许零拍的稀疏性以及稀疏预算的范围,这些预算的范围将询问奖励损失,这些奖励损失是通过我们所学的门控功能最小化的,几乎没有弹药。为了证明我们的结果的功效,我们尝试了合作的多代理任务,在这些任务中,沟通对于成功至关重要。我们通过连续和离散消息评估我们的模型。我们将分析重点放在各种消融上,以显示信息表示的效果,包括它们的属性和模型的无损性能。
Communication enables agents to cooperate to achieve their goals. Learning when to communicate, i.e., sparse (in time) communication, and whom to message is particularly important when bandwidth is limited. Recent work in learning sparse individualized communication, however, suffers from high variance during training, where decreasing communication comes at the cost of decreased reward, particularly in cooperative tasks. We use the information bottleneck to reframe sparsity as a representation learning problem, which we show naturally enables lossless sparse communication at lower budgets than prior art. In this paper, we propose a method for true lossless sparsity in communication via Information Maximizing Gated Sparse Multi-Agent Communication (IMGS-MAC). Our model uses two individualized regularization objectives, an information maximization autoencoder and sparse communication loss, to create informative and sparse communication. We evaluate the learned communication `language' through direct causal analysis of messages in non-sparse runs to determine the range of lossless sparse budgets, which allow zero-shot sparsity, and the range of sparse budgets that will inquire a reward loss, which is minimized by our learned gating function with few-shot sparsity. To demonstrate the efficacy of our results, we experiment in cooperative multi-agent tasks where communication is essential for success. We evaluate our model with both continuous and discrete messages. We focus our analysis on a variety of ablations to show the effect of message representations, including their properties, and lossless performance of our model.