论文标题
随机共聚物逆设计系统定向准确发现抗菌肽模拟共聚物
Random Copolymer inverse design system orienting on Accurate discovering of Antimicrobial peptide-mimetic copolymers
论文作者
论文摘要
抗菌素耐药性是最大的健康问题之一,尤其是在当前的Covid-19大流行期。由于独特的膜破坏性杀菌机制,抗菌肽模拟共聚物会引起更多关注,并且迫切需要找到更多具有广谱抗菌功效和低毒性的潜在候选者。人工智能在小分子或生物技术药物上表现出了显着的性能,但是,聚合物空间的较高维度和有限的实验数据限制了现有方法在共聚物设计上的应用。本文中,我们通过多模型共聚物表示,知识蒸馏和增强学习来开发通用的随机共聚逆设计系统。我们的系统通过从多模式共聚物表示中提取各种化学信息来实现高精度抗菌活性预测。通过通过知识蒸馏预先培训脚手架 - 导剂生成模型,共聚物空间与现有数据的近乎探索空间相关。因此,我们的强化学习算法可以适应于特定的脚手架和财产或结构要求的定制生成。我们将系统应用于收集的抗菌肽模拟共聚物数据,并发现具有所需特性的候选共聚物。
Antimicrobial resistance is one of the biggest health problem, especially in the current period of COVID-19 pandemic. Due to the unique membrane-destruction bactericidal mechanism, antimicrobial peptide-mimetic copolymers are paid more attention and it is urgent to find more potential candidates with broad-spectrum antibacterial efficacy and low toxicity. Artificial intelligence has shown significant performance on small molecule or biotech drugs, however, the higher-dimension of polymer space and the limited experimental data restrict the application of existing methods on copolymer design. Herein, we develop a universal random copolymer inverse design system via multi-model copolymer representation learning, knowledge distillation and reinforcement learning. Our system realize a high-precision antimicrobial activity prediction with few-shot data by extracting various chemical information from multi-modal copolymer representations. By pre-training a scaffold-decorator generative model via knowledge distillation, copolymer space are greatly contracted to the near space of existing data for exploration. Thus, our reinforcement learning algorithm can be adaptive for customized generation on specific scaffolds and requirements on property or structures. We apply our system on collected antimicrobial peptide-mimetic copolymers data, and we discover candidate copolymers with desired properties.