论文标题
通过深度学习从下一代DNA测序的可扩展病原体检测
Scalable Pathogen Detection from Next Generation DNA Sequencing with Deep Learning
论文作者
论文摘要
下一代测序技术通过增加了从异构来源收集的大量基因组数据,以降低的成本以增加了大量的基因组数据,从而提高了Things Inforts(IoT)的范围(IoT),以包括个性化医学的基因组学。鉴于收集的数据的巨大幅度以及在物种之间存在高度相似基因组结构所带来的重大挑战,因此需要强大的可扩展分析平台来提取可行的知识,例如存在潜在的人畜共患病原体。新型病原体的人畜共患病出现,例如1918年的流感病毒和2019年的SARS-COV-2,可以跳跃物种障碍并导致大流行强调了对可扩展的元基因组分析的需求。在这项工作中,我们提出了一种基于深度学习的解决方案MG2VEC,该解决方案将变压器网络用作骨干,以从原始的元基因组序列中学习强大的特征,以用于下游生物医学任务,例如靶向和广义病原体检测。对四个越来越具有挑战性但现实的诊断环境进行的广泛实验表明,所提出的方法可以帮助从具有标签的形式的人类监督最少的人类监督中检测未经灌木的现实世界临床样本的病原体。此外,我们证明,学习的表示形式可以推广到跨疾病和物种的完全无关的病原体,以进行大规模的元基因组分析。我们为基于深度学习的基于元基因组的疾病诊断的新型表示学习框架提供了全面的评估,并为从低成本下一代测序中提取和使用强大的矢量表示提供了前进的方向,以开发可通用的诊断工具。
Next-generation sequencing technologies have enhanced the scope of Internet-of-Things (IoT) to include genomics for personalized medicine through the increased availability of an abundance of genome data collected from heterogeneous sources at a reduced cost. Given the sheer magnitude of the collected data and the significant challenges offered by the presence of highly similar genomic structure across species, there is a need for robust, scalable analysis platforms to extract actionable knowledge such as the presence of potentially zoonotic pathogens. The emergence of zoonotic diseases from novel pathogens, such as the influenza virus in 1918 and SARS-CoV-2 in 2019 that can jump species barriers and lead to pandemic underscores the need for scalable metagenome analysis. In this work, we propose MG2Vec, a deep learning-based solution that uses the transformer network as its backbone, to learn robust features from raw metagenome sequences for downstream biomedical tasks such as targeted and generalized pathogen detection. Extensive experiments on four increasingly challenging, yet realistic diagnostic settings, show that the proposed approach can help detect pathogens from uncurated, real-world clinical samples with minimal human supervision in the form of labels. Further, we demonstrate that the learned representations can generalize to completely unrelated pathogens across diseases and species for large-scale metagenome analysis. We provide a comprehensive evaluation of a novel representation learning framework for metagenome-based disease diagnostics with deep learning and provide a way forward for extracting and using robust vector representations from low-cost next generation sequencing to develop generalizable diagnostic tools.