论文标题
当年龄不变的面部识别符合面部年龄综合时:多任务学习框架和一个新的基准测试
When Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework and A New Benchmark
论文作者
论文摘要
为了最大程度地减少年龄变化对面部识别的影响,年龄不变的面部识别(AIFR)通过最小化身份和年龄相关的特征之间的相关性来提取与身份相关的区分特征,而面部年龄合成(FAS)通过将不同年龄的面孔转化为不同年龄组的面部年龄变化,从而消除了年龄变化。但是,AIFR缺乏模型解释的视觉结果,而FAS由于伪影而损害了下游识别。因此,我们提出了一个统一的多任务框架,以共同处理这两个任务,称为MTLFACE,可以学习与身份与身份相关的身份相关的表示,以识别面部识别,同时实现令人愉悦的面部综合来进行模型解释。具体而言,我们提出了一种基于注意力的特征分解,将混合面特征分解为两个不相关的组件 - 身份和年龄相关的特征 - 以空间约束。与实现组级FA的常规单热编码不同,我们提出了一个新型的身份条件模块,以实现身份级的FAS,可以通过重量分担策略来改善合成面的年龄平滑度。从提议的多任务框架中受益,我们利用了从FAS的那些高质量的合成面孔通过新颖的选择性微调策略来进一步增强AIFR。此外,为了促进AIFR和FAS,我们收集并释放一个具有年龄和性别注释的大型跨年龄脸部数据集,以及专门设计用于追踪长期失误的孩子的新基准。五个基准跨年龄数据集的广泛实验结果表明,MTLFACE为AIFR和FAS提供了出色的性能。我们进一步验证了两个流行的一般面部识别数据集中的mtlface,从而在野外获得竞争性能。代码可在http://hzzone.github.io/mtlface上找到。
To minimize the impact of age variation on face recognition, age-invariant face recognition (AIFR) extracts identity-related discriminative features by minimizing the correlation between identity- and age-related features while face age synthesis (FAS) eliminates age variation by converting the faces in different age groups to the same group. However, AIFR lacks visual results for model interpretation and FAS compromises downstream recognition due to artifacts. Therefore, we propose a unified, multi-task framework to jointly handle these two tasks, termed MTLFace, which can learn the age-invariant identity-related representation for face recognition while achieving pleasing face synthesis for model interpretation. Specifically, we propose an attention-based feature decomposition to decompose the mixed face features into two uncorrelated components -- identity- and age-related features -- in a spatially constrained way. Unlike the conventional one-hot encoding that achieves group-level FAS, we propose a novel identity conditional module to achieve identity-level FAS, which can improve the age smoothness of synthesized faces through a weight-sharing strategy. Benefiting from the proposed multi-task framework, we then leverage those high-quality synthesized faces from FAS to further boost AIFR via a novel selective fine-tuning strategy. Furthermore, to advance both AIFR and FAS, we collect and release a large cross-age face dataset with age and gender annotations, and a new benchmark specifically designed for tracing long-missing children. Extensive experimental results on five benchmark cross-age datasets demonstrate that MTLFace yields superior performance for both AIFR and FAS. We further validate MTLFace on two popular general face recognition datasets, obtaining competitive performance on face recognition in the wild. Code is available at http://hzzone.github.io/MTLFace.